Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39339618

RESUMO

Industrial waste and sewage deposit heavy metals into the soil, where they can remain for long periods. Although there are several methods to manage heavy metals in agricultural soil, microorganisms present a promising and effective solution for their detoxification. We isolated a rhizofungus, Aspergillus terreus (GenBank Acc. No. KT310979.1), from Parthenium hysterophorus L., and investigated its growth-promoting and metal detoxification capabilities. The isolated fungus was evaluated for its ability to mitigate lead (25 and 75 ppm) and copper (100 and 200 ppm) toxicity in Triticum aestivum L. seedlings. The experiment utilized a completely randomized design with three replicates for each treatment. A. terreus successfully colonized the roots of wheat seedlings, even in the presence of heavy metals, and significantly enhanced plant growth. The isolate effectively alleviates lead and copper stress in wheat seedlings, as evidenced by increases in shoot length (142%), root length (98%), fresh weight (24%), dry weight (73%), protein content (31%), and sugar content (40%). It was observed that wheat seedlings possess a basic defense system against stress, but it was insufficient to support normal growth. Fungal inoculation strengthened the host's defense system and reduced its exposure to toxic heavy metals. In treated seedlings, exposure to heavy metals significantly upregulated MT1 gene expression, which aided in metal detoxification, enhanced antioxidant defenses, and maintained metal homeostasis. A reduction in metal exposure was observed in several areas, including normalizing the activities of antioxidant enzymes that had been elevated by up to 67% following exposure to Pb (75 mg/kg) and Cu (200 mg/kg). Heavy metal exposure elevated antioxidant levels but also increased ROS levels by 86%. However, with Aspergillus terreus colonization, ROS levels stayed within normal ranges. This decrease in ROS was associated with reduced malondialdehyde (MDA) levels, enhanced membrane stability, and restored root architecture. In conclusion, rhizofungal colonization improved metal tolerance in seedlings by decreasing metal uptake and increasing the levels of metal-binding metallothionein proteins.

2.
Heliyon ; 10(17): e36797, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319123

RESUMO

Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 µg/mL), followed by F20 (69.19 ± 0.61 µg/mL) and F52 (75.06 ± 0.45 µg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.

3.
3 Biotech ; 14(10): 226, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39263325

RESUMO

Endophytic fungal molecules have the potential to be a cost-effective chemical source for developing eco-friendly disease-controlling pharmaceuticals that target mosquito-borne illnesses. The primary aims of the study were to identify the fungus Fusarium begoniae larvicidal ability against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. The ethyl acetate extract demonstrated lethal concentrations that kill 50% of exposed larvae (LC50) and 90% of exposed larvae (LC90) for the 1st to 4th instar larvae of An. stephensi (LC50 = 54.821, 66.525, 68.250, and 73.614; LC90 = 104.56, 138.205, 150.415, and 159.466 µg/mL), Cx. quinquefasciatus (LC50 = 64.981, 36.505, 42.230, and 36.514; LC90 = 180.46, 157.105, 140.318, and 153.366 µg/ mL), and Ae. aegypti (LC50 = 74.890, 33.607, 52.173, and 26.974; LC90 = 202.56, 162.205, 130.518, and 163.286 µg/mL). Mycelium metabolites were evaluated for their pupicidal activity towards Ae. aegypti (LC50 = 80.669, LC90 = 119.904), Cx. quinquefasciatus (LC50 = 70.569, LC90 = 109.840), and An. stephensi (LC50 = 73.269, LC90 = 110.590 µg/mL). The highest larvicidal activity was recorded at 300 µg/mL, with 100% mortality against first and second-instar larvae of Cx. quinquefasciatus. Metabolite exposure to larvae exhibited several abnormal behavioral changes. The exposure to F. begoniae metabolite, key esterases such as acetylcholinesterase, α-and-ß-carboxylesterase, and acid and alkaline phosphatase activity significantly decreased compared to control larvae. The outcomes of the histology analysis revealed that the mycelium metabolites-treated targeted larvae had a disorganized abdominal mid and hindgut epithelial cells. The is first-hand information on study of ethyl-acetate-derived metabolites from F. begoniae tested against larvae and pupae of Ae. aegypti, Cx. quinquefasciatus and An. stephensi. Bio-indicator toxicity findings demonstrate that A. nauplii displayed no mortality. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04061-z.

4.
Heliyon ; 10(15): e35570, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170247

RESUMO

Introduction: The COVID-19 infection as an inflammatory disease has posed significant challenges to global public health due to multi-factor risks associated with it leading to disease severity and mortality. Understanding the effect of age and comorbidities on overall disease progression is crucial to identify highly susceptible individuals and to develop effective disease management strategies in a resource limited country like Pakistan. Methodology: A retrospective study was conducted on hospitalized COVID-19 patients to assess the prevalence of various comorbidities among different age groups and their effect on disease severity and mortality rate. Results: In this retrospective study, a cohort of 618 hospitalized COVID-19 patients was analyzed, consisting of 387 males (62.6 %) and 231 females (37.4 %). Notably, the young age group (15-24 years), had the lowest frequency of hospitalized COVID-19 patients, while no case was observed in children (≤14 years) showing a significant association (p < 0.001) of age and disease prevalence. Comorbidities were observed in 63.9 % of COVID-19 patients including hypertension (HTN), diabetes mellitus (DM), ischemic heart diseases (IHD), asthma, chronic kidney disease (CKD) and tuberculosis (TB). The most common comorbidities were HTN (42.1 %) followed by DM (33.8 %), IHD (16.5 %), asthma (11.2 %), CKD (7.9 %) and TB (1.9 %).Furthermore, the study revealed a significant association between comorbidities, age groups, and the need for non-invasive ventilation (NIV) (p < 0.001), mechanical ventilation (MV) (p < 0.001), and intensive care unit (ICU) admission (p < 0.001). Patients with specific comorbidities and those in the older age group (≥65 years) demonstrated a higher need for these interventions. However, patients without any comorbidity consistently exhibited the highest cumulative proportion of survival at each time point, indicating better overall survival outcomes. In contrast, patients with multimorbidities of DM/HTN/IHD, HTN/IHD, and DM/HTN/CKD had comparatively lower survival rates and higher mortality rates (p < 0.001). Conclusion: This research highlights the significant impact of age, comorbidities and multimorbidities on the severity and mortality of COVID-19 patients. It highlights the importance of considering these factors in tailoring effective management strategies for patients with COVID-19 or other infectious respiratory diseases.

5.
Curr Pharm Des ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39129154

RESUMO

INTRODUCTION: Silver nanoparticles (AgNPs) have gained significance due to their practical use in the medicinal field, especially in the treatment of tumors and cancer. The current article explores a green synthetic method for the preparation of AgNPs using leaf extract of Euphorbia royleanas. METHODS: The synthesis was conducted at different parameters like concentration of AgNO3, pH, salt concentration, temperature and time to optimize best results for their biochemical applications. It was validated through UV-V spectroscopy (400-450 nm) with 1:3 (concentration ratio of leaf ethanolic extract and 1 mM AgNO3 solution) at a pH value of 8 at 35oC, which were the best optimization conditions. The FTIR spectral bands showed the presence of C-N and -OH functional groups, indicating that -OH stretching and the aliphatic -C-H stretching were involved in the reduction of Ag ions. The XRD pattern showed the face-centered cubic structure of silver nanoparticles. The results of SEM revealed that AgNPs were predominantly spherical in shape, mono-dispersed, and arranged in scattered form. EDX analysis testified the presence of metallic silver along with other elements like Cl, C, and O. RESULTS: The investigation of biochemical parameters showed that AgNPs were influential in the discoloration of dye wastewater (methylene blue ), where 80% of dye color was removed in 20 min, followed by the significant (p < 0.05) analgesic activity with an inhibition percentage of 86.45% at a dose of 500 mg/kg. CONCLUSION: Similarly, the antioxidant activity with the highest percent inhibition was 55.4% (p < 0.0001), shown by the AgNPs at 500 µg/mL. AgNPs showed a 30 mm zone of inhibition at 100 µl/mL against Aspergillus niger. It was concluded that AgNPs provide a baseline in medical technology for the treatment of simple to chronic diseases.

6.
Heliyon ; 10(13): e33995, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091955

RESUMO

Globally, breast cancer is a primary contributor to cancer-related fatalities and illnesses among women. Consequently, there is a pressing need for safe and effective treatments for breast cancer. Bioactive compounds from endophytic fungi that live in symbiosis with medicinal plants have garnered significant interest in pharmaceutical research due to their extensive chemical composition and prospective medicinal attributes. This review underscores the potentiality of fungal endophytes as a promising resource for the development of innovative anticancer agents specifically tailored for breast cancer therapy. The diversity of endophytic fungi residing in medicinal plants, success stories of key endophytic bioactive metabolites tested against breast cancer and the current progress with regards to in vivo studies and clinical trials on endophytic fungal metabolites in breast cancer research forms the underlying theme of this article. A thorough compilation of putative anticancer compounds sourced from endophytic fungi that have demonstrated therapeutic potential against breast cancer, spanning the period from 1990 to 2022, has been presented. This review article also outlines the latest trends in endophyte-based drug discovery, including the use of artificial intelligence, machine learning, multi-omics approaches, and high-throughput strategies. The challenges and future prospects associated with fungal endophytes as substitutive sources for developing anticancer drugs targeting breast cancer are also being highlighted.

7.
Front Plant Sci ; 15: 1391348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952849

RESUMO

Introduction: Arsenate, a metalloid, acting as an analog to phosphate, has a tendency to accumulate more readily in plant species, leading to adverse effects. Methods: In the current study, sunflower seedlings were exposed to 25, 50 and 100 ppm of the arsenic. Results: Likewise, a notable reduction (p<0.05) was observed in the relative growth rate (RGR) by 4-folds and net assimilation rate (NAR) by 75% of Helianthus annuus when subjected to arsenic (As) stress. Nevertheless, the presence of Staphylococcus arlettae, a plant growth-promoting rhizobacterium with As tolerance, yielded an escalation in the growth of H. annuus within As-contaminated media. S. arlettae facilitated the conversion of As into a form accessible to plants, thereby, increasing its uptake and subsequent accumulation in plant tissues. S. arlettae encouraged the enzymatic antioxidant systems (Superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT)) and non-enzymatic antioxidants (flavonoids, phenolics, and glutathione) in H. annuus seedlings following substantial As accumulation. The strain also induced the host plant to produce osmolytes like proline and sugars, mitigating water loss and maintaining cellular osmotic balance under As-induced stress. S. arlettae rectified imbalances in lignin content, reduced high malonaldehyde (MDA) levels, and minimized electrolyte leakage, thus counteracting the toxic impacts of the metal. Conclusion: The strain exhibited the capability to concurrently encourage plant growth and remediate Ascontaminated growth media through 2-folds rate of biotransformation and bio-mobilization.

8.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972980

RESUMO

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Assuntos
Antioxidantes , Aspergillus niger , Chumbo , Fosfatos , Fotossíntese , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Aspergillus niger/metabolismo , Chumbo/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico , Biodegradação Ambiental
9.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065806

RESUMO

Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury.

10.
Pathogens ; 13(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921734

RESUMO

BACKGROUND: Fusarium species, a group of economically destructive phytopathogens, are poorly studied in Mauritius where agriculture holds much significance. Furthermore, the increasing popularity of organic farming has prompted interest in alternatives to chemical fungicides. METHODS: After gaining an overview of Fusarium prevalence in Mauritius fields through a survey, the pathogen was isolated from infected crops and identified based on morphological and molecular characteristics. Methanol and water extracts were then prepared from Melia azedarach, Ocimum gratissimum, cinnamon and cloves before determining their phytochemical profiles. Additionally, the antioxidant and antifungal effects of different concentrations of aqueous extracts were assessed. RESULTS: The isolate was confirmed as Fusarium oxysporum, and cloves inhibited its growth by up to 100%, especially at 60 and 90 g/L, with the results being significantly higher than those of the synthetic fungicide mancozeb. Over 50% inhibition was also noted for cinnamon and Ocimum gratissimum, and these effects could be linked to the flavonoids, phenols and terpenoids in the extracts. CONCLUSION: This study presented the aqueous extracts of cloves, cinnamon and Ocimum gratissimum as potential alternatives to chemical fungicides. It also confirmed the prevalence of Fusarium infection in Mauritius fields, thereby highlighting the need for additional studies on the pathogen.

11.
Vet Q ; 44(1): 1-9, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38903017

RESUMO

Animal industry seeks cost-effective solutions to enhance performance and health of domestic animals. This study investigated the effects of supplementing Bacillus spp. probiotics and xylanase on 2000 one-day-old Japanese quails, randomly assigned to four treatment groups (10 replicates). The control group received no supplementation, while the others were supplemented with a Bacillus-based probiotic at 7.5 × 107 cfu/kg of feed, xylanase enzyme (2,000 U/kg) alone or in combination. Quails receiving both probiotic and enzyme exhibited significantly (p < 0.01) higher weekly and overall weight gain, and lower feed conversion ratios compared to the control group. Dressing percentage was higher (p < 0.01), and mortality lower in birds supplemented with a combination of enzyme and probiotic. Antibody titres against infectious bronchitis and infectious bursal disease were significantly (p < 0.01) higher in quails receiving combined probiotic and enzyme supplementation, while titres against Newcastle disease virus were higher (p < 0.01) in groups supplemented with probiotic and enzyme individually or in combination. Additionally, digestibility was significantly (p < 0.01) higher in groups receiving combined enzyme and probiotic supplementation, with higher apparent metabolizable energy compared to the control. The populations of beneficial Lactobacillus increased, while harmful E. coli and Salmonella decreased significantly in quails supplemented with both probiotic and enzyme. In conclusion, supplementing xylanase enzyme and probiotic together in Japanese quails positively influenced growth, nutrient digestibility, immune response, and cecal microbiota.


Assuntos
Ração Animal , Bacillus , Coturnix , Dieta , Digestão , Endo-1,4-beta-Xilanases , Fezes , Probióticos , Animais , Probióticos/farmacologia , Probióticos/administração & dosagem , Coturnix/imunologia , Ração Animal/análise , Endo-1,4-beta-Xilanases/farmacologia , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/administração & dosagem , Dieta/veterinária , Digestão/efeitos dos fármacos , Fezes/microbiologia , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Animal , Distribuição Aleatória , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/imunologia
12.
Pharmaceuticals (Basel) ; 17(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38931372

RESUMO

Diabetes mellitus is a heterogeneous metabolic disorder that poses significant health and economic challenges across the globe. Polysaccharides, found abundantly in edible plants, hold promise for managing diabetes by reducing blood glucose levels (BGL) and insulin resistance. However, most of these polysaccharides cannot be digested or absorbed directly by the human body. Here we report the production of antidiabetic oligosaccharides from cress seed mucilage polysaccharides using yeast fermentation. The water-soluble polysaccharides extracted from cress seed mucilage were precipitated using 75% ethanol and fermented with Pichia pastoris for different time intervals. The digested saccharides were fractionated through gel permeation chromatography using a Bio Gel P-10 column. Structural analysis of the oligosaccharide fractions revealed the presence of galacturonic acid, rhamnose, glucuronic acid, glucose and arabinose. Oligosaccharide fractions exhibited the potential to inhibit α-amylase and α-glucosidase enzymes in a dose-dependent manner in vitro. The fraction DF73 exhibited strong inhibitory activity against α-amylase with IC50 values of 38.2 ± 1.12 µg/mL, compared to the positive control, acarbose, having an IC50 value of 29.18 ± 1.76 µg/mL. Similarly, DF72 and DF73 showed the highest inhibition of α-glucosidase, with IC50 values of 9.26 ± 2.68 and 50.47 ± 5.18 µg/mL, respectively. In in vivo assays in streptozotocin (STZ)-induced diabetic mice, these oligosaccharides significantly reduced BGL and improved lipid profiles compared to the reference drug metformin. Histopathological observations of mouse livers indicated the cytoprotective effects of these sugars. Taken together, our results suggest that oligosaccharides produced through microbial digestion of polysaccharides extracted from cress seed mucilage have the potential to reduce blood glucose levels, possibly through inhibition of carbohydrate-digesting enzymes and regulation of the various signaling pathways.

13.
Environ Geochem Health ; 46(7): 225, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849628

RESUMO

In this study, the freshwater microalgae Selenastrum sp. was assessed for the effective degradation of pyrene and simultaneous production of biodiesel from pyrene-tolerant biomass. The growth of algae was determined based on the cell dry weight, cell density, chlorophyll content, and biomass productivity under different pyrene concentrations. Further, lipids from pyrene tolerant culture were converted into biodiesel by acid-catalyzed transesterification, which was characterized for the total fatty acid profile by gas chromatography. Increased pyrene concentration revealed less biomass yield and productivity after 20 days of treatment, indicating potent pyrene biodegradation by Selenastrum sp. Biomass yield was unaffected till the 20 mg/L pyrene. A 95% of pyrene bioremediation was observed at 20 days of culturing. Lipid accumulation of 22.14%, as evident from the estimation of the total lipid content, indicated a marginal increase in corroborating pyrene stress in the culture. Fatty acid methyl esters yield of 63.06% (% per 100 g lipids) was noticed from the pyrene tolerant culture. Moreover, fatty acid profile analysis of biodiesel produced under 10 mg/L and 20 mg/L pyrene condition showed escalated levels of desirable fatty acids in Selenastrum sp., compared to the control. Further, Selenastrum sp. and other freshwater microalgae are catalogued for sustainable development goals attainment by 2030, as per the UNSDG (United Nations Sustainable Development Goals) agenda. Critical applications for the Selenastrum sp. in bioremediation of pyrene, along with biodiesel production, are enumerated for sustainable and renewable energy production and resource management.


Assuntos
Biodegradação Ambiental , Biocombustíveis , Biomassa , Água Doce , Microalgas , Pirenos , Pirenos/metabolismo , Microalgas/metabolismo , Ácidos Graxos/metabolismo , Poluentes Químicos da Água/metabolismo , Clorofila/metabolismo
14.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38866707

RESUMO

Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l-1, PA content peaking at 1.25 mg g-1, and a total PA yield of 4.76 g l-1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.


Assuntos
Biomassa , Meios de Cultura , Fermentação , Micélio , Triterpenos , Wolfiporia , Wolfiporia/genética , Wolfiporia/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Micélio/genética , Triterpenos/metabolismo , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Expressão Gênica
15.
BMC Plant Biol ; 24(1): 450, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783216

RESUMO

BACKGROUND: Guava is a fruit prone to rapid spoilage following harvest, attributed to continuous and swift physicochemical transformations, leading to substantial postharvest losses. This study explored the efficacy of xanthan gum (XG) coatings applied at various concentrations (0.25, 0.5, and 0.75%) on guava fruits (Gola cultivar) over a 15-day storage period. RESULTS: The results indicated that XG coatings, particularly at 0.75%, substantially mitigated moisture loss and decay, presenting an optimal concentration. The coated fruits exhibited a modified total soluble soluble solids, an increased total titratable acidity, and an enhanced sugar-acid ratio, collectively enhancing overall quality. Furthermore, the XG coatings demonstrated the remarkable ability to preserve bioactive compounds, such as total phenolics, flavonoids, and antioxidants, while minimizing the levels of oxidative stress markers, such as electrolyte leakage, malondialdehyde, and H2O2. The coatings also influenced cell wall components, maintaining levels of hemicellulose, cellulose, and protopectin while reducing water-soluble pectin. Quantitative analysis of ROS-scavenging enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, revealed significant increases in their activities in the XG-coated fruits compared to those in the control fruits. Specifically, on day 15, the 0.75% XG coating demonstrated the highest SOD and CAT activities while minimizing the reduction in APX activity. Moreover, XG coatings mitigated the activities of fruit-softening enzymes, including pectin methylesterase, polygalacturonase, and cellulase. CONCLUSIONS: This study concludes that XG coatings play a crucial role in preserving postharvest quality of guava fruits by regulating various physiological and biochemical processes. These findings offer valuable insights into the potential application of XG as a natural coating to extend the shelf life and maintain the quality of guava fruits during storage.


Assuntos
Frutas , Polissacarídeos Bacterianos , Psidium , Psidium/química , Polissacarídeos Bacterianos/farmacologia , Frutas/química , Frutas/efeitos dos fármacos , Conservação de Alimentos/métodos , Antioxidantes/metabolismo
16.
Reprod Domest Anim ; 59(4): e14557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613191

RESUMO

Limited literature is available on the consequences of postpartum low blood calcium (Ca) concentration in crossbred cows. The research aimed to investigate the correlation between postpartum serum Ca levels and various parameters, including milk yield, serum energy metabolites, milk somatic cell count, and reproductive factors in crossbred cows. Following parturition, a total of 45 potential high-yielding F2 (HF × Sahiwal; Genotype: 75:25) dairy cows were enrolled . These cows were categorized based on plasma calcium concentrations into three groups: a low calcium group (Ca-L) with a calcium concentration of <5 mg/dL, a medium calcium group (Ca-M) with a calcium concentration ranging from 5 to 8.5 mg/dL, and a high calcium group (Ca-H) with a calcium concentration exceeding 8.5 mg/dL. The study parameters were measured over an 8-week period. The results indicated that overall milk yield and blood glucose were significantly higher in the Ca-H group compared to Ca-M and Ca-L (p < .01). Blood cholesterol was significantly higher in Ca-M (p < .01), while blood triglyceride was significantly lower in both Ca-M and Ca-H. Overall, blood cortisol did not show a significant change between these groups (p < .01); however, progesterone levels were higher (p < .01) in Ca-M and Ca-H cows. Furthermore, somatic cell count (SCC) significantly (p < .01) decreased in cows with Ca-H compared to Ca-L. Additionally, postpartum oestrous interval and interestrus interval decreased significantly (p < .01) in Ca-M and Ca-H compared to Ca-L. These findings suggest that cows with blood calcium levels exceeding 8.5 mg/dL exhibited significantly higher milk yield, blood metabolite levels, a lower likelihood of subclinical mastitis, and earlier reproductive activity after calving.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Gravidez , Cálcio , Leite , Testes Hematológicos/veterinária
17.
Heliyon ; 10(7): e28955, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623192

RESUMO

Marine fungi represent an important proportion of the microbial diversity in the oceans. They are attractive candidates for biotechnological purposes and industrial applications. Despite an increasing interest in mycology, marine fungi associated with sponges and algae have been poorly studied in Mauritius. The objectives of this study were to: 1) use multigene phylogenetic analyses to identify isolated marine fungi; 2) determine the differences in the antimicrobial and antioxidant properties of the fungal extracts; and 3) assess their enzyme activities and dye decolorization potential. Five fungal isolates viz Aspergillus chevalieri, Aspergillus iizukae, Aspergillus ochraceus, Exserohilum rostratum and Biatriospora sp. were identified based on phylogenetic analyses. There was no significant difference in the antimicrobial properties of the liquid and solid media extracts unlike the antioxidant properties (p < 0.05). The solid media extract of Aspergillus chevalieri (F2-SF) had a minimum inhibitory concentration of 0.156 mg/ml against Staphylococcus aureus while Aspergillus ochraceus (F25-SF) had a minimum inhibitory concentration of 0.313 and 2.5 mg/ml against Enterococcus faecalis and Salmonella typhi. The solid media extract of Biatriospora sp. (F34-SF) had a minimum inhibitory concentration of 0.195 and 1.563 mg/ml against Bacillus cereus, Escherichia coli and Enterobacter cloacae. An IC50 of 78.92 ± 4.71 µg/ml in the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, ferric reducing antioxidant power (FRAP) value of 11.17 ± 0.20 mM Fe2+/g dry weight extract (DWE) and total phenolic content 360.35 ± 10.31 mg GAE/g DWE was obtained with the solid media extract of Aspergillus chevalieri (F2-SF). Aspergillus ochraceus (F25-SF) and Biatriospora sp. (F34-SF) solid media extracts showed lower IC50 values in the DPPH assay and higher total phenolic content as compared to the liquid media extracts. Aspergillus chevalieri was a good producer of the enzymes DNAse and lipase and had maximum percentage dye decolorization of 79.40 ± 17.72% on Congo red. An enzymatic index ≥ 2 was found for the DNAse and lipase and the maximum percentage dye decolorization of 87.18 ± 3.80% was observed with Aspergillus ochraceus on Methylene blue. Regarding Biatriospora sp., it was a moderate producer of the three enzymes amylase, DNAse and protease and had a maximum dye decolorization potential of 56.29 ± 6.51% on Crystal violet. This study demonstrates that Mauritian marine fungi possess good bioactive properties, enzymatic and dye decolorization potentials, that can potentially be considered for use in pharmaceutical and industrial applications.

18.
Heliyon ; 10(7): e29031, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601549

RESUMO

This study aimed to identify efficient Trichoderma isolate(s) for the management of Fusarium wilt in peas. Four different pea germplasms (Sarsabz, Pea-09, Meteor and Supreme) were evaluated for resistance against Fusarium oxysporum in pot assay. Resistant germplasm exhibits a varying range of disease severity (23%) and percent disease index (21%), whereas susceptible and highly susceptible germplasm exhibit maximum disease severity (44-79%) and percent disease index (47-82%). The susceptible germplasm Meteor was selected for in vivo experiment. Five different Trichoderma spp. (Trichoderma koningii, T. hamatum, T. longibrachiatum, T. viride, and T. harzianum) were screened for the production of hydrolytic extracellular enzymes under in vitro. In-vitro biocontrol potential of Trichoderma spp. was assayed by percentage inhibition of dry mass of Fusarium oxysporum pisi (FOP) with Trichoderma spp. metabolite filtrate concentrations. Maximum growth inhibition was observed by T. harzianum (50-89%). T. harzianum metabolites in filtrate conc. (40%, 50%, and 60%) exhibited maximum reduction in biomass and were thus used for in vivo management of the disease. The pot experiment for in-vivo management also confirmed the maximum inhibition of FOP by T. harzianum metabolites filtrate at 60% by reducing disease parameters and enhancing growth, yield, and physiochemical and stress markers. Trichoderma strains led to an increase in chlorophyll and carotenoids (34-26%), Total phenolic 55%, Total protein content 60%, Total Flavonoid content 36%, and the increasing order of enzyme activities were as follows: CAT > POX > PPO > PAL in all treatments. These strains demonstrate excellent bio-control of Fusarium wilt in pea via induction of defense-related enzymes. The present work will help use Trichoderma species in disease management programme as an effective biocontrol agent against plant pathogens.

19.
Curr Pharm Des ; 30(17): 1307-1316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629357

RESUMO

BACKGROUND: Surgical site infections are one of the major clinical problems in surgical departments that cost hundreds of millions of dollars to healthcare systems around the world. AIM: The study aimed to address the pressing issue of surgical site infections, which pose significant clinical and financial burdens on healthcare systems globally. Recognizing the substantial costs incurred due to these infections, the research has focused on understanding the role of lipase and protease production by multi-drug resistant bacteria isolated from surgical wounds in the development of post-surgical wound infections. METHODS: For these purposes, 153 pus specimens were collected from patients with severe post-surgical wound infections having prolonged hospital stays. The specimens were inoculated on appropriate culture media. Gram staining and biochemical tests were used for the identification of bacterial growth on suitable culture media after 24 hours of incubation. The isolated pathogens were then applied for lipase and protease, key enzymes that could contribute to wound development, on tributyrin and skimmed milk agar, respectively. Following the CSLI guidelines, the Kirby-Bauer disc diffusion method was used to assess antibiotic susceptibility patterns. The results revealed that a significant proportion of the samples (127 out of 153) showed bacterial growth of Gram-negative (n = 66) and Gram-positive (n = 61) bacteria. In total, isolated 37 subjects were declared MDR due to their resistance to three or more than three antimicrobial agents. The most prevalent bacteria were Staphylococcus aureus (29.13%), followed by S. epidermidis (18.89%), Klebsiella pneumoniae (18.89%), Escherichia coli (14.96%), Pseudomonas aeruginosa (10.23%), and Proteus mirabilis (7.87%). Moreover, a considerable number of these bacteria exhibited lipase and protease activity with 70 bacterial strains as lipase positive on tributyrin agar, whereas 74 bacteria showed protease activity on skimmed milk agar with P. aeruginosa as the highest lipase (69.23%) and protease (76.92%) producer, followed by S. aureus (lipase 62.16% and protease 70.27%). RESULTS: The antimicrobial resistance was evaluated among enzyme producers and non-producers and it was found that the lipase and protease-producing bacteria revealed higher resistance to selected antibiotics than non-producers. Notably, fosfomycin and carbapenem were identified as effective antibiotics against the isolated bacterial strains. However, gram-positive bacteria displayed high resistance to lincomycin and clindamycin, while gram-negative bacteria were more resistant to cefuroxime and gentamicin. CONCLUSION: In conclusion, the findings suggest that lipases and proteases produced by bacteria could contribute to drug resistance and act as virulence factors in the development of surgical site infections. Understanding the role of these enzymes may inform strategies for preventing and managing post-surgical wound infections more effectively.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Lipase , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases , Humanos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lipase/metabolismo , Lipase/biossíntese , Antibacterianos/farmacologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/biossíntese , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação
20.
Plants (Basel) ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38475561

RESUMO

The current study was carried out to screen 10 isolates (ARS-01-ARS-10) of Rhizoctonia. solani from potato tubers cv. Kuroda, which were collected from various potato fields in Multan, Pakistan. The isolates were found to be morphologically identical, as the hyphae exhibit the production of branches at right angles and acute angles often accompanied by septum near the emerging branches. Anastomosis grouping showed that these isolates belonged to AG-3. A pathogenicity test was performed against the susceptible Kuroda variety and among the isolates, ARS-05 exhibited the highest mean severity score of approximately 5.43, followed by ARS-09, which showed a mean severity score of about 3.67, indicating a moderate level of severity. On the lower end of the severity scale, isolates ARS-06 and ARS-07 displayed mean severity scores of approximately 0.53 and 0.57, respectively, suggesting minimal symptom severity. These mean severity scores offer insights into the varying degrees of symptom expression among the different isolates of R. solani under examination. PCoA indicates that the severe isolate causing black scurf on the Kuroda variety was AG-3. A comprehensive analysis of the distribution, genetic variability, and phylogenetic relationships of R. solani anastomosis groups (AGs) related to potato crops across diverse geographic regions was also performed to examine AG prevalence in various countries. AG-3 was identified as the most widespread group, prevalent in Sweden, China, and the USA. AG-5 showed prominence in Sweden and the USA, while AG-2-1 exhibited prevalence in China and Japan. The phylogenetic analysis unveiled two different clades: Clade I comprising AG-3 and Clade II encompassing AG-2, AG-4, and AG-5, further subdivided into three subclades. Although AGs clustered together regardless of origin, their genetic diversity revealed complex evolutionary patterns. The findings pave the way for region-specific disease management strategies to combat R. solani's impact on potato crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA