Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140830, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056711

RESUMO

Membrane fouling is a critical bottleneck to the widespread adoption of membrane separation processes. It diminishes the membrane permeability and results in high operational energy costs. The current study presents optimizing the operating parameters of a novel rotating biological contactor (RBC) integrated with an external membrane (RBC + ME) that combines membrane technology with an RBC. In the RBC + ME, the membrane panel is placed external to the bioreactor. Response surface methodology (RSM) is applied to optimize the membrane permeability through three operating parameters (hydraulic retention time (HRT), rotational disk speed, and sludge retention time (SRT)). The artificial neural networks (ANN) and support vector machine (SVM) are implemented to depict the statistical modelling approach using experimental data sets. The results showed that all three operating parameters contribute significantly to the performance of the bioreactor. RSM revealed an optimum value of 40.7 rpm disk rotational speed, 18 h HRT and 12.4 d SRT, respectively. An ANN model with ten hidden layers provides the highest R2 value, while the SVM model with the Bayesian optimizer provides the highest R2. RSM, ANN, and SVM models reveal the highest R-square values of 0.97, 0.99, and 0.99, respectively. Machine learning techniques help predict the model based on the experimental results and training data sets.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Teorema de Bayes , Reatores Biológicos , Esgotos
2.
Environ Technol ; : 1-14, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970835

RESUMO

The concept and analysis of integrating membrane distillations (MD) with reversal once-through Multistage Flash (RV-MSF) desalination is presented. The analysis is based on numerical simulation. The MD vessels are integrated into the terminal ends of the RV-MSF system to leverage the thermal energy associated with these terminal streams. Hybridisation at the last MSF stage, i.e. by replacing the brine cooler, contributes marginally to the overall production rate which amounts to 2%. However, it is found that hybridisation at stage one, i.e. utilising the energy of the MSF reject brine can increase the overall production rate by 65%. For seawater feed temperature of 80 oC and 24 MSF stages, 5 MD vessels in series can be integrated with the RV-MSF process. This ultimate hybridisation helped improve the recovery ratio from 7 to 23%, decreasing the specific cooling water requirement from 23 to 12 kg/kg and reducing the specific energy consumption from 129 to 41 kWh/m3 with respect to the stand-alone RV-MSF system. However, this achievement incurs an additional specific area for heat transfer which increased from 29 to 65 m2/(kg/s). This is because a large number of MD modules are incorporated into the hybridisation.

3.
Membranes (Basel) ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623765

RESUMO

Integrated fixed-film activated sludge (IFAS) is a hybrid wastewater treatment process that combines suspended and attached growth. The current review provides an overview of the effect of operating parameters on the performance of IFAS and their implications for wastewater treatment. The operating parameters examined include hydraulic retention time (HRT), solids retention time (SRT), dissolved oxygen (DO) levels, temperature, nutrient loading rates, and aeration. Proper control and optimization of these parameters significantly enhance the treatment efficiency and pollutant removal. Longer HRT and appropriate SRT contribute to improved organic matter and nutrient removal. DO levels promote the growth of aerobic microorganisms, leading to enhanced organic matter degradation. Temperature influences microbial activity and enzymatic reactions, impacting treatment efficiency. Nutrient loading rates must be carefully managed to avoid system overload or inhibition. Effective aeration ensures uniform distribution of wastewater and biofilm carriers, optimizing contact between microorganisms and pollutants. IFAS has been used in water reuse applications, providing a sustainable and reliable water source for non-potable uses. Overall, IFAS has proven to be an effective and efficient treatment process that can provide high-quality effluent suitable for discharge or reuse. Understanding the effects of these operating parameters helps to optimize the design and operation for efficient wastewater treatment. Further research is needed to explore the interactions between different parameters, evaluate their impact under varying wastewater characteristics, and develop advanced control strategies for improved performance and sustainability.

4.
Environ Sci Technol ; 53(7): 3488-3498, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848585

RESUMO

In this study, we propose a novel module design to integrate forward osmosis (FO) and membrane distillation (MD). The two processes are sealed in one module and operated simultaneously, making the system compact and suitable for a wide range of applications. To evaluate the system under large-scale module operating conditions, FO and MD experiments were performed separately. The effect of draw solution (DS) temperature on the FO performance was first assessed in terms of flux, reverse salt flux (RSF), and specific RSF (SRSF). While a higher DS temperature resulted in an increased RSF, a higher FO flux was achieved, with a lower SRSF. The influence of DS concentration on the MD performance was then investigated in terms of flux and salt rejection. High DS concentration had a slightly negative impact on MD water vapor flux, but the MD membrane was a complete barrier for DS salts. The FO-MD integrated module was simulated based on mass balance equations. Results indicated that initial DS (MD feed) flow rate and concentration are the most important factors for stable operation of the integrated module. Higher initial DS flow rate and lower initial DS concentration can achieve a higher permeate rate of the FO-MD module.


Assuntos
Destilação , Purificação da Água , Membranas Artificiais , Osmose , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA