Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7819, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570582

RESUMO

Heart disease is a leading cause of mortality on a global scale. Accurately predicting cardiovascular disease poses a significant challenge within clinical data analysis. The present study introduces a prediction model that utilizes various combinations of information and employs multiple established classification approaches. The proposed technique combines the genetic algorithm (GA) and the recursive feature elimination method (RFEM) to select relevant features, thus enhancing the model's robustness. Techniques like the under sampling clustering oversampling method (USCOM) address the issue of data imbalance, thereby improving the model's predictive capabilities. The classification challenge employs a multilayer deep convolutional neural network (MLDCNN), trained using the adaptive elephant herd optimization method (AEHOM). The proposed machine learning-based heart disease prediction method (ML-HDPM) demonstrates outstanding performance across various crucial evaluation parameters, as indicated by its comprehensive assessment. During the training process, the ML-HDPM model exhibits a high level of performance, achieving an accuracy rate of 95.5% and a precision rate of 94.8%. The system's sensitivity (recall) performs with a high accuracy rate of 96.2%, while the F-score highlights its well-balanced performance, measuring 91.5%. It is worth noting that the specificity of ML-HDPM is recorded at a remarkable 89.7%. The findings underscore the potential of ML-HDPM to transform the prediction of heart disease and aid healthcare practitioners in providing precise diagnoses, exerting a substantial influence on patient care outcomes.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Mamífero Proboscídeo , Humanos , Animais , Cardiopatias/diagnóstico , Doenças Cardiovasculares/diagnóstico , Análise por Conglomerados , Análise de Dados , Aprendizado de Máquina
2.
Diagnostics (Basel) ; 13(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568973

RESUMO

Because it is associated with most multifactorial inherited diseases like heart disease, hypertension, diabetes, and other serious medical conditions, obesity is a major global health concern. Obesity is caused by hereditary, physiological, and environmental factors, as well as poor nutrition and a lack of exercise. Weight loss can be difficult for various reasons, and it is diagnosed via BMI, which is used to estimate body fat for most people. Muscular athletes, for example, may have a BMI in the obesity range even when they are not obese. Researchers from a variety of backgrounds and institutions devised different hypotheses and models for the prediction and classification of obesity using different approaches and various machine learning techniques. In this study, a majority voting-based hybrid modeling approach using a gradient boosting classifier, extreme gradient boosting, and a multilayer perceptron was developed. Seven distinct machine learning algorithms were used on open datasets from the UCI machine learning repository, and their respective accuracy levels were compared before the combined approaches were chosen. The proposed majority voting-based hybrid model for prediction and classification of obesity that was achieved has an accuracy of 97.16%, which is greater than both the individual models and the other hybrid models that have been developed.

3.
Math Biosci Eng ; 19(8): 7586-7605, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35801437

RESUMO

By upgrading medical facilities with internet of things (IoT), early researchers have produced positive results. Isolated COVID-19 patients in remote areas, where patients are not able to approach a doctor for the detection of routine parameters, are now getting feasible. The doctors and families will be able to track the patient's health outside of the hospital utilizing sensors, cloud storage, data transmission, and IoT mobile applications. The main purpose of the proposed research-based project is to develop a remote health surveillance system utilizing local sensors. The proposed system also provides GSM messages, live location, and send email to the doctor during emergency conditions. Based on artificial intelligence (AI), a feedback action is taken in case of the absence of a doctor, where an automatic injection system injects the dose into the patient's body during an emergency. The significant parameters catering to our project are limited to ECG monitoring, SpO2 level detection, body temperature, and pulse rate measurement. Some parameters will be remotely shown to the doctor via the Blynk application in case of any abrupt change in the parameters. If the doctor is not available, the IoT system will send the location to the emergency team and relatives. In severe conditions, an AI-based system will analyze the parameters and injects the dose.


Assuntos
COVID-19 , Aplicativos Móveis , Inteligência Artificial , COVID-19/diagnóstico , COVID-19/epidemiologia , Computação em Nuvem , Eletrocardiografia , Humanos
4.
Math Biosci Eng ; 19(1): 456-472, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902999

RESUMO

Rehabilitation engineering is playing a more vital role in the field of healthcare for humanity. It is providing many assistive devices to diplegia patients (The patients whose conditions are weak in terms of muscle mobility on both sides of the body and their paralyzing effects are high either in the arms or in the legs). Therefore, in order to rehabilitate such types of patients, an intelligent healthcare system is proposed in this research. The electric sticks and chairs are also a type of this system which was used previously to facilitate the diplegia patients. It is worth noting that a voice recognition system along with wireless control feature has been integrated intelligently in the proposed healthcare system in order to replace the common and conventional assistive tools for diplegia patients. These features will make the proposed system more user friendly, convenient and comfortable. The voice recognition system has been used for movements of system in any desired direction along with the ultrasonic sensor and light detecting technology. These sensors detect the obstacles and low light environment intelligently during the movement of the wheelchair and then take the necessary actions accordingly.


Assuntos
Debilidade Muscular , Paralisia , Tecnologia Assistiva , Tecnologia sem Fio , Atenção à Saúde , Humanos , Movimento , Debilidade Muscular/reabilitação , Paralisia/reabilitação , Cadeiras de Rodas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA