Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541241

RESUMO

Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 µg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.


Assuntos
Adesinas Bacterianas , Anti-Infecciosos , Nanopartículas Metálicas , Polifenóis , Solanum lycopersicum , Humanos , Prata/farmacologia , Antioxidantes/farmacologia , Virulência , Nanopartículas Metálicas/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Biofilmes , Anti-Inflamatórios/farmacologia
2.
Microb Pathog ; 178: 106055, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36914056

RESUMO

Beta-hemolytic multidrug-resistant bacteria (MDR) are highly regarded as a major public health risk because they are resistant to at least 10 antibiotics in different groups with different mechanisms of action. The present study shows that among 98 bacterial isolates collected from laboratory fecal samples: 15 were beta-hemolytic and tested against 10 different antibiotics. 15 beta-hemolytic; 5 isolates exhibit strong multidrug resistance traits. Isolate 5 Escherichia coli (E. coli), Isolate 7 (E. coli), Isolate 21 (Enterococcus faecium), Isolate 27 (Staphylococcus sciuri), and isolate 36 (E. coli) are largely untested antibiotics. Substances (clear zone >10 mm) Its growth sensitivity to different types of nanoparticles was further evaluated by the agar well diffusion method. AgO, TiO2, ZnO, and Fe3O4 nanoparticles have been separately synthesized by microbial and plant-mediated biosynthesis. By evaluating the antibacterial activity of different nanoparticle types against selected MDR isolates, the results showed that global MDR bacterial growth was inhibited differently depending on the nanoparticle type. TiO2 was the most potent antibacterial nanoparticle type, followed by AgO, while Fe3O4 showed the least efficacy against selected isolates. The MICs of microbially synthesized AgO and TiO2 nanoparticles were 3 µg (67.2 µg/mL) and 9 µg (180 µg/mL) for isolates 5 and 27, respectively, indicating that biosynthetic nanoparticles via pomegranate of antibacterial activity at a higher MIC than microbial-mediated ones, it recorded (300 and 375 µg/ml, respectively) of AgO and TiO2 nanoparticles for isolates 5 and 27. Biosynthesized nanoparticles were examined by TEM, the average sizes of microbial AgO and TiO2 nanoparticles were 30 nm and 70 nm, respectively, and the average sizes of plant mediated AgO and TiO2 NPs were 52 nm and 82 nm respectively. Two most potent extensive MDR isolates (5 and 27) were identified as E. coli and Staphylococcus sciuri by 16s rDNA technology, and the sequencing results of the isolates were deposited with NCBI GenBank under accession numbers ON739202 and ON739204, respectively.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxidos , Escherichia coli/genética , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA