Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
ACS Omega ; 9(3): 3980-3987, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284045

RESUMO

Keeping in mind the health scenario in Kingdom of Saudi Arabia with respect to vitamin D3 (VD3) deficiency and its significant role in calcium homeostasis and human metabolism, this research is exploring the combination of eggshell (as a source of calcium) and VD3 as a very economical solution for this problem. Eggshells from local restaurant were collected, washed, ground, sieved, and characterized by Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) techniques. The results of FTIR, SEM, DSC, XRD, and BET indicate that eggshell powder (ESP) was properly processed. Directly compressed tablets containing 2.5 mg of VD3 (equivalent to 50,000 IU), that are based on the use of ESP as tablet filler, were manufactured based on mixing Avicel PH 101 with ESP in different ratios (9:1, 1:1, and 1:9) in addition to the use of both Avicel PH 101 and ESP alone as tablet filler. Tablets properties were evaluated according to USP30-NF25 pharmacopoeia tests in terms of weight variation test, drug content uniformity, tablet hardness, tablet friability, tablet disintegration, and in vitro dissolution profile. The VD3 contents were found to be 98.77-102.35% in all formulations. After 90 min of study, all formulations showed in vitro drug release content in the range of 99.29-101.05%. All of the tested parameters of ESP tablets were similar to those of commercial Avicel PH 101. All of the tested properties of tablets with ESP as a filler were found to be within the acceptable limits of the pharmacopeia recommendations. Therefore, ESP could be exploited for its use as a filler in direct compression tablets.

2.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067534

RESUMO

Cabozantinib malate (CBZM), a new anticancer medication, has been studied for its solubility and thermodynamic properties in a variety of {dimethyl sulfoxide (DMSO) + water (H2O)} mixtures at 298.2-318.2 K and 101.1 kPa. Using the shake flask technique, the solubility of CBZM was assessed and the results were correlated to the van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models. There was a significant correlation between the experimental CBZM solubility data and all computational models, as evidenced by the error values for all computational models being less than 5.0%. Temperature and DMSO mass percentage improved the CBZM mole fraction solubility in the cosolvent solutions of {DMSO + H2O}. At 318.2 K, pure DMSO had the highest mole fraction solubility of CBZM (4.38 × 10-2), whereas pure H2O had the lowest mole fraction solubility (2.24 × 10-7 at 298.2 K). The positive values of computed thermodynamic parameters indicated that the dissolution of CBZM was endothermic and entropy-driven in all of the {DMSO + H2O} solutions investigated. It was found that the CBZM solvation in {DMSO + H2O} solutions is governed by enthalpy. When compared to CBZM-H2O, CBZM-DMSO showed the highest molecular interactions. The findings of this investigation demonstrated that DMSO has a great deal of potential for CBZM solubilization in H2O.

3.
ACS Omega ; 8(44): 41755-41764, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970055

RESUMO

A nanoemulsion-based polyherbal mouthwash (PHFX) of Curcuma longa hydroalcoholic extract was developed and evaluated for its antibacterial effects against a variety of Gram-positive and Gram-negative oral pathogens in comparison to standard chlorhexidine acetate (CHD-A) (positive control). Various nanoemulsion-based mouthwashes of C. longa extract were produced using an aqueous phase titration approach via construction of pseudoternary phase diagrams. The developed nanoemulsion-based PHFX was studied for thermodynamic stability tests. Selected formulations (PHFX1-PHFX5) were characterized physicochemically for droplet diameter, polydispersity index (PDI), refractive index (RI), transmittance, and pH. The drug release studies were performed using the dialysis method. Based on the minimum droplet diameter (26.34 nm), least PDI (0.132), optimal RI (1.337), maximum %T (99.13), optimal pH (6.45), and maximum cumulative drug release (98.2%), formulation PHFX1 (containing 0.5% w/w of C. longa extract, 1.5% w/w of clove oil, 7.0% w/w of Tween-80, 7.0% w/w of Transcutol-HP, and 84.0% w/w of water) was selected for antimicrobial studies in comparison to standard CHD-A. The antibacterial effects and minimum inhibitory concentration were studied against various Gram-positive oral pathogens such as Streptococcus mutans, Staphylococcus aureus, Streptococcus pneumoniae, and Bacillus subtilis and Gram-negative oral pathogens such as Escherichia coli and Klebsiella pneumoniae. The antibacterial effects of PHFX1 were found to be significant over standard CHD-A against most Gram-positive and Gram-negative oral pathogens. The antimicrobial studies showed that the formulation PHFX1 was effective against all oral pathogens even at 3- to 4-fold lower working concentrations. These findings indicated the potential of nanoemulsion-based mouthwash in the treatment of a variety of oral pathogen infections.

4.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894589

RESUMO

The solubility and solution thermodynamics of isotretinoin (ITN) (3) in numerous {dimethyl sulfoxide (DMSO) (1) + water (H2O) (2)} combinations were studied at 298.2-318.2 K under fixed atmospheric pressure of 101.1 kPa. A shake flask methodology was used to determine ITN solubility, and correlations were made using the "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". In mixtures of {(DMSO (1) + H2O (2)}, the solubility of ITN in mole fractions was enhanced with the temperature and DMSO mass fraction. The mole fraction solubility of ITN was highest in neat DMSO (1.02 × 10-1 at 318.2 K) and lowest in pure H2O (3.14 × 10-7 at 298.2 K). The output of computational models revealed good relationships between the solubility data from the experiments. The dissolution of ITN was "endothermic and entropy-driven" in all of the {(DMSO (1) + H2O (2)} mixtures examined, according to the positive values of measured thermodynamic parameters. Enthalpy was discovered to be the driving force behind ITN solvation in {(DMSO (1) + H2O (2)} combinations. ITN-DMSO displayed the highest molecular interactions when compared to ITN-H2O. The outcomes of this study suggest that DMSO has a great potential for solubilizing ITN in H2O.

5.
Heliyon ; 9(8): e18405, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576265

RESUMO

In this study, an environmentally friendly "high-performance liquid chromatography (HPLC)" assay to quantify isotretinoin (ITN) in commercial products and solubility samples is designed and verified. A Nucleodur reverse-phase C18 column was used as the stationary phase to identify ITN. The ecologically friendly mobile phase was composed of ethyl acetate and ethanol (50:50 v/v), and it was delivered at a flow rate of 1.0 mL/min. ITN was measured at 354 nm in wavelength. The current HPLC method had a determination coefficient of 0.9994 and was linear in the 0.2-80 µg/g range. The current protocol for ITN measurement was also rapid (retention time = 2.78 min), accurate (%recoveries = 98.60-101.52), precise (% uncertainties = 0.71-0.98), and sensitive. According to the AGREE methodology, the current procedure received an outstanding greenness profile with an AGREE score of 0.76. By determining ITN in commercial products and solubility samples, the applicability of the current approach was proven. ITN was discovered to be present in 98.43% and 100.84%, respectively, of commercial capsule brands A and B. The ITN's solubility in numerous eco-friendly solvents was successfully measured. Under different stress conditions, the current approach was able to distinguish between its degradation products, demonstrating its stability-indicating characteristics. These findings indicated that ITN in procured capsules and solubility samples might be regularly tested by the suggested approach.

6.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175381

RESUMO

Lung cancer is the main cause of cancer-related mortality globally. Erlotinib is a tyrosine kinase inhibitor, affecting both cancerous cell proliferation and survival. The emergence of oncological nanotechnology has provided a novel drug delivery system for erlotinib. The aims of this current investigation were to formulate two different polyamidoamine (PAMAM) dendrimer generations-generation 4 (G4) and generation 5 (G5) PAMAM dendrimer-to study the impact of two different PAMAM dendrimer formulations on entrapment by drug loading and encapsulation efficiency tests; to assess various characterizations, including particle size distribution, polydispersity index, and zeta potential; and to evaluate in vitro drug release along with assessing in situ human lung adenocarcinoma cell culture. The results showed that the average particle size of G4 and G5 nanocomposites were 200 nm and 224.8 nm, with polydispersity index values of 0.05 and 0.300, zeta potential values of 11.54 and 4.26 mV of G4 and G5 PAMAM dendrimer, respectively. Comparative in situ study showed that cationic G4 erlotinib-loaded dendrimer was more selective and had higher antiproliferation activity against A549 lung cells compared to neutral G5 erlotinib-loaded dendrimers and erlotinib alone. These conclusions highlight the potential effect of cationic G4 dendrimer as a targeting-sustained-release carrier for erlotinib.


Assuntos
Dendrímeros , Neoplasias Pulmonares , Humanos , Cloridrato de Erlotinib/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/tratamento farmacológico , Pulmão
7.
Saudi Pharm J ; 31(1): 170-179, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685302

RESUMO

Background: Multidrug-resistant (MDR) bacterial infections have become an emerging health concern around the world. Antibiotics resistance among S. pneumoniae strains increased recently contributing to increase in incidence of pneumococcal infection. This necessitates the discovery of novel antipnemococcal such as compound C3-005 which target the interaction between RNA polymerase and σ factors. Chitosan nanoparticles (CNPs) exhibited antibacterial activity including S. pneumonia. Therefore, the aims of the current investigation were to formulate CNPs loaded with C3-005 and characteristic their antimicrobial properties against S. pneumonia. Methods: The CNPs and C3-005 loaded CNPs were produced utilizing ionic gelation method, and their physicochemical characteristics including particle size, zeta potential, polydispersity index (PDI), encapsulation efficiency (EE%), and in vitro release profile were studied. Both differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) were used for chemical characterization. The synthesized NPs' minimum inhibitory concentration (MIC) was determined using killing assay and broth dilution method, and their impact on bacteria induced hemolysis were also studied. Results: The NPs encapsulating C3-005 were successfully prepared with particle size of 343.5 nm ± 1.3, zeta potential of 29.8 ± 0.37, and PDI of 0.20 ± 0.03. 70 % of C3-005 were encapsulated in CNPs and sustained release pattern of C3-005 from CNPs was revealed by an in vitro release study. CNPs containing C3-005 exhibited higher antipnomcoccal activity with MIC50 of 30 µg/ml when compared with C3-005 and empty CNPs alone. The prepared C3-CNPs showed a reduction of bacterial hemolysis in a concentration-related (dependent) manner and was higher than C3-005 alone. Conclusions: The findings of this study showed the potential for using C3-005 loaded CNPs to treat pneumococcal infection.

8.
Materials (Basel) ; 15(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36431759

RESUMO

The solubilization and thermodynamic analysis of isotretinoin (ITN) in eleven distinct green solvents, such as water, methyl alcohol (MeOH), ethyl alcohol (EtOH), 1-butyl alcohol (1-BuOH), 2-butyl alcohol (2-BuOH), ethane-1,2-diol (EG), propane-1,2-diol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO) was studied at several temperatures and a fixed atmospheric pressure. The equilibrium approach was used to measure the solubility of ITN, and the Apelblat, van't Hoff, and Buchowski−Ksiazczak λh models were used to correlate the results. The overall uncertainties were less than 5.0% for all the models examined. The highest ITN mole fraction solubility was achieved as 1.01 × 10−1 in DMSO at 318.2 K; however, the least was achieved as 3.16 × 10−7 in water at 298.2 K. ITN solubility was found to be enhanced with an increase in temperature and the order in which it was soluble in several green solvents at 318.2 K was as follows: DMSO (1.01 × 10−1) > EA (1.73 × 10−2) > PEG-400 (1.66 × 10−2) > THP (1.59 × 10−2) > 2-BuOH (6.32 × 10−3) > 1-BuOH (5.88 × 10−3) > PG (4.83 × 10−3) > EtOH (3.51 × 10−3) > EG (3.49 × 10−3) > MeOH (2.10 × 10−3) > water (1.38 × 10−6). ITN−DMSO showed the strongest solute−solvent interactions when compared to the other ITN and green solvent combinations. According to thermodynamic studies, ITN dissolution was endothermic and entropy-driven in all of the green solvents tested. The obtained outcomes suggested that DMSO appears to be the best green solvent for ITN solubilization.

9.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080730

RESUMO

Pseudomonas aeruginosa contributes to many chronic infections and has been found to be resistant to multiple antibiotics. Pseudomonas use a quorum sensing system (QS) to control biofilm establishment and virulence factors, and, thus, quorum sensing inhibitors (QSIs), such as meta-bromo-thiolactone (mBTL), are promising anti-infective agents. Accordingly, this study intended to investigate the antibacterial and anti-virulence activity of mBTL-loaded calcium alginate nanoparticles (CANPs) against Pseudomonas aeruginosa and different QS mutants. The results show that the mBTL-CANPs had higher antibacterial activity, which was made evident by decreases in all tested strains except the ∆lasR/∆rhlR double mutant, with MIC50 (0.5 mg/mL) of mBTL-CANPs compared with free mBTL at MIC50 (˃1 mg/mL). The biofilm formation of P. aeruginosa and some QS-deficient mutants were reduced in response to 0.5-0.125 mg/mL of mBTL-encapsulating CANPs. The pyocyanin production of the tested strains except ∆lasA and ∆rhlR decreased when challenged with 0.5 mg/mL of mBTL-loaded NPs. The subsequent characterization of the cytotoxic effect of these NPs on human lung epithelial cells (A549) and cystic fibrosis fibroblast cells (LL 29) demonstrated that synthesized NPs were cytocompatible at MIC50 in both cell lines and markedly reduced the cytotoxic effect observed with mBTL alone on these cells. The resulting formulation reduced the P. aeruginosa strains' adhesion to A549 comparably with mBTL, suggesting their potential anti-adhesive effect. Given the virulence suppressing action, cytocompatibility, and enhanced anti-biofilm effect of mBTL-CANPs, and the advantage of alginate-based NPs as an antimicrobial delivery system these nanoparticles have great potential in the prophylaxis and treatment of infection caused by Pseudomonas aeruginosa.

10.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889340

RESUMO

Various chitosan (CS)-based nanoparticles (CS-NPs) of ciprofloxacin hydrochloride (CHCl) have been investigated for therapeutic delivery and to enhance antimicrobial efficacy. However, the Box-Behnken design (BBD)-supported statistical optimization of NPs of CHCl has not been performed in the literature. As a result, the goal of this study was to look into the key interactions and quadratic impacts of formulation variables on the performance of CHCl-CS-NPs in a systematic way. To optimize CHCl-loaded CS-NPs generated by the ionic gelation process, the response surface methodology (RSM) was used. The BBD was used with three factors on three levels and three replicas at the central point. Tripolyphosphate, CS concentrations, and ultrasonication energy were chosen as independent variables after preliminary screening. Particle size (PS), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), and in vitro release were the dependent factors (responses). Prepared NPs were found in the PS range of 198-304 nm with a ZP of 27-42 mV. EE and drug release were in the range of 23-45% and 36-61%, respectively. All of the responses were optimized at the same time using a desirability function based on Design Expert® modeling and a desirability factor of 95%. The minimum inhibitory concentration (MIC) of the improved formula against two bacterial strains, Pseudomonas aeruginosa and Staphylococcus aureus, was determined. The MIC of the optimized NPs was found to be decreased 4-fold compared with pure CHCl. The predicted and observed values for the optimized formulation were nearly identical. The BBD aided in a better understanding of the intrinsic relationship between formulation variables and responses, as well as the optimization of CHCl-loaded CS-NPs in a time- and labor-efficient manner.


Assuntos
Quitosana , Nanopartículas , Ciprofloxacina/farmacologia , Portadores de Fármacos , Tamanho da Partícula , Projetos de Pesquisa
11.
Pharmaceutics ; 14(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890338

RESUMO

Ruboxistaurin (RBX) is an anti-vascular endothelial growth factor (anti-VEGF) agent that is used in the treatment of diabetic retinopathy and is mainly given intravitreally. To provide a safe and effective method for RBX administration, this study was designed to develop RBX nanoparticles using polyamidoamine (PAMAM) dendrimer generation 5 for the treatment of diabetic retinopathy. Drug loading efficiency, and in vitro release of proposed complexes of RBX: PAMAM dendrimers were determined and the complexation ratio that showed the highest possible loading efficiency was selected. The drug loading efficiency (%) of 1:1, 2.5:1, and 5:1 complexes was 89.2%, 96.4%, and 97.6%, respectively. Loading capacities of 1:1, 2.5:1, and 5:1 complexes were 1.6%, 4.0%, and 7.2% respectively. In comparison, the 5:1 complex showed the best results in the aforementioned measurements. The in vitro release studies showed that in 8 h, the RBX release from 1:1, 2.5:1, and 5:1 complexes was 37.5%, 35.9%, and 77.0%, respectively. In particular, 5:1 complex showed the highest drug release. In addition, particle size measurements showed that the diameter of empty PAMAM dendrimers was 214.9 ± 8.5 nm, whereas the diameters of loaded PAMAM dendrimers in 1:1, 2.5:1, 5:1 complexes were found to be 461.0 ± 6.4, 482.4 ± 12.5, and 420.0 ± 7.1 nm, respectively. Polydispersity index (PDI) showed that there were no significant changes in the PDI between the free and loaded PAMAM dendrimers. The zeta potential measurements showed that the free and loaded nanoparticles possessed neutral charges due to the presence of anionic and cationic terminal structures. Furthermore, the safety of this formulation was apparent on the viability of the MIO-M1 cell lines. This nanoformulation will improve the therapeutic outcomes of anti-VEGF therapy and the bioavailability of RBX to prevent vision loss in patients with diabetic retinopathy.

12.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630561

RESUMO

Psoriatic arthritis is an autoimmune disease of the joints that can lead to persistent inflammation, irreversible joint damage and disability. The current treatments are of limited efficacy and inconvenient. Apremilast (APR) immediate release tablets Otezla® have 20-33% bioavailability compared to the APR absolute bioavailability of 73%. As a result, self-nanoemulsifying drug delivery systems (SNEDDS) of APR were formulated to enhance APR's solubility, dissolution, and oral bioavailability. The drug assay was carried out using a developed and validated HPLC method. Various thermodynamic tests were carried out on APR-SNEDDS. Stable SNEDDS were characterized then subjected to in vitro drug release studies via dialysis membrane. The optimum formulation was F9, which showed the maximum in vitro drug release (94.9%) over 24 h, and this was further investigated in in vivo studies. F9 was composed of 15% oil, 60% Smix, and 25% water and had the lowest droplet size (17.505 ± 0.247 nm), low PDI (0.147 ± 0.014), low ZP (-13.35 mV), highest %T (99.15 ± 0.131) and optimum increases in the relative bioavailability (703.66%) compared to APR suspension (100%) over 24 h. These findings showed that APR-SNEDDS is a possible alternative delivery system for APR. Further studies are warranted to evaluate the major factors that influence the encapsulation efficiency and stability of APR-containing SNEDDS.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Emulsões , Tamanho da Partícula , Diálise Renal , Talidomida/análogos & derivados
13.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946581

RESUMO

Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.


Assuntos
Sistemas de Liberação de Medicamentos , Fígado/efeitos dos fármacos , Luteolina/farmacologia , Nanopartículas/química , Substâncias Protetoras/farmacologia , Administração Oral , Animais , Tetracloreto de Carbono/farmacologia , Emulsões/administração & dosagem , Emulsões/metabolismo , Emulsões/farmacologia , Fígado/metabolismo , Luteolina/administração & dosagem , Luteolina/metabolismo , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Tamanho da Partícula , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Ratos , Ratos Wistar , Solubilidade , Termodinâmica
14.
Drug Dev Ind Pharm ; 47(4): 654-662, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33823120

RESUMO

The solubilization, Hansen solubility parameters (HSPs), and thermodynamic properties of delafloxacin (DLN) in various unique combination of Transcutol-HP® (THP) and 1-butyl-3-methyl imidazolium hexafluorophosphate ionic liquid (BMIM-PF6) mixtures were evaluated for the first time in this research. The 'mole fraction solubilities (x3)' of DLN in different (THP + BMIM-PF6) compositions were determined at 'T = 298.2-318.2 K' and 'p = 0.1 MPa'. The HSPs of DLN, neat THP, neat BMIM-PF6, and binary (THP + BMIM-PF6) compositions free of DLN were also determined. The x3 data of DLN was regressed using 'van't Hoff, Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-van't Hoff models' with overall error values of less than 3.0%. The highest and lowest x3 value of DLN was recorded in neat THP (5.48 × 10-3 at T = 318.2 K) and neat BMIM-PF6 (6.50 × 10-4 at T = 298.2 K), respectively. The solubility of DLN was found to be enhanced significantly with an arise in temperature in all (THP + BMIM-PF6) compositions including pure THP and pure BMIM-PF6. However, there was slight increase in DLN solubility with increase in THP mass fraction in all (THP + BMIM-PF6) mixtures. The HSP of pure THP and pure BMIM-PF6 were found very close to each other, suggesting the great potential of both solvents in DLN solubilization. The maximum solute-solvent interactions at molecular level were recorded in DLN-THP compared to DLN-BMIM-PF6. An 'apparent thermodynamic analysis' study indicated an 'endothermic and entropy-driven dissolution' of DLN in all (THP + BMIM-PF6) compositions including neat THP and BMIM-PF6.


Assuntos
Água , Etilenoglicóis , Fluoroquinolonas , Solubilidade , Termodinâmica
15.
Curr Pharm Des ; 27(13): 1579-1587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33155905

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has changed the global scenario. To date, there are no treatment or preventive options. The discovery of a new drug will take time. In addition, the new drug will have side effects, and the virus will gradually become resistant to it. Therefore, it is important to search for a drug with a natural origin. OBJECTIVE: In this review, we analyzed and summarized various ethnomedicinal plants and their bioactive compounds as a source of antiviral agents for COVID-19 prevention and treatment. METHODS: From the literature, we selected different natural compounds that can act as potential targets at low cost with broad-spectrum antiviral activity. RESULTS: Of the 200 Chinese herbal extracts tested for their possible role against SARS-CoV, Lycoris radiata, Artemisia annua, Pyrrosia lingua, and Lindera aggregate showed anti-SARS-CoV effects with the median effective concentration = 2.4-88.2 µg/mL. CONCLUSION: Ethnomedicinal herbs can be used as an alternative source of novel, promising antiviral agents that might directly or indirectly inhibit the COVID-19 progression.


Assuntos
COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
16.
Molecules ; 25(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231154

RESUMO

This study was aimed to find out the solubility, thermodynamic behavior, Hansen solubility parameters and molecular interactions of an antiviral drug emtricitabine (ECT) in various "[polyethylene glycol-400 (PEG-400) + water]" mixtures. The solubility of ECT in mole fraction was determined at "T = 298.2 to 318.2 K" and "p = 0.1 MPa" using an isothermal method. The experimental solubilities of ECT in mole fraction were validated and correlated using various computational models which includes "Van't Hoff, Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van't Hoff models". All the models performed well in terms of model correlation. The solubility of ECT was increased with the raise in temperature in all "PEG-400 + water" mixtures studied. The highest and lowest solubility values of ECT were found in pure PEG-400 (1.45 × 10-1) at "T = 318.2 K" and pure water (7.95 × 10-3) at "T = 298.2 K", respectively. The quantitative values of activity coefficients indicated higher interactions at molecular level in ECT and PEG-400 combination compared with ECT and water combination. "Apparent thermodynamic analysis" showed an "endothermic and entropy-driven dissolution" of ECT in all "PEG-400 + water" combinations studied. The solvation nature of ECT was found an "enthalpy-driven" in each "PEG-400 + water" mixture studied.


Assuntos
Emtricitabina/química , Modelos Químicos , Polietilenoglicóis/química , Termodinâmica , Água/química , Algoritmos , Emtricitabina/farmacologia , Transição de Fase , Solubilidade , Solventes
17.
Sci Rep ; 10(1): 4084, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139735

RESUMO

Polymeric nanofibers fabricated by electrospinning either blank (PVA) or loaded with minoxidil sulphate have yielded optimum fibers with an average diameter 273 nm, and 511 nm, respectively. Thermal analysis of nanofibers indicated no chemical interaction. The NMR spectrum confirmed stability of nanofiber as there were no interactions between functional groups. Prepared nanofibers showed a 47.4% encapsulation efficiency and 73% yield. In vitro drug release of minoxidil sulphate from nanofiber exhibited an initial burst release followed by a slower release pattern. Stability studies revealed that minoxidil nanofiber was stable if stored at room temperature and protected from light with only loss of 9.6% of its nominal concentration within 6 months. As a result, the prepared solid/colored formula serves as an ideal formulation for such instable drug in liquid formula taking the advantage of the attractiveness of beauty colored coverage, and the simple, and non-tousled application.


Assuntos
Alopecia/prevenção & controle , Portadores de Fármacos/química , Minoxidil/análogos & derivados , Nanofibras/química , Polímeros/química , Liberação Controlada de Fármacos , Humanos , Minoxidil/química
18.
ACS Omega ; 5(3): 1708-1716, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010845

RESUMO

Glipizide (GLZ) is an oral hypoglycemic agent, which is a weakly aqueous soluble drug. The solubility values of GLZ in various neat solvents are scarce in the literature. Hence, the solubility of GLZ in 12 different neat solvents, namely, "water, methanol, ethanol, isopropanol (IPA), 1-butanol, 2-butanol, ethylene glycol (EG), propylene glycol (PG), poly(ethylene glycol)-400 (PEG-400), ethyl acetate (EA), dimethyl sulfoxide (DMSO), and Transcutol-HP (THP)", at "T = 298.2-318.2 K" and "p = 0.1 MPa" was measured. The recorded solubilities of GLZ were correlated by "van't Hoff and Apelblat models" using root-mean-square deviation (RMSD). The overall RMSD was obtained as 1.21 and 1.40% for "Apelblat and van't Hoff models", respectively. Different solubility parameters of all studied materials including drug and solvent were calculated to find the best solvent for GLZ. The solubilities of GLZ (expressed in mole fraction) have been found highest in DMSO (2.81 × 10-2), followed by THP, EA, 2-butanol, 1-butanol, IPA, PEG-400, ethanol, PG, methanol, EG, and water (1.98 × 10-4) at "T = 318.2 K". All investigated solubility parameters of GLZ were recorded very close to the DMSO. "Apparent thermodynamic analysis" showed an "endothermic and entropy-driven dissolution" of GLZ in the 12 different neat solvents. The highest molecular interactions were recorded in GLZ-DMSO compared to other combinations. Overall, DMSO has been considered as the best solvent for the solubilization of GLZ.

19.
Int J Nanomedicine ; 14: 9259-9273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819428

RESUMO

PURPOSE: The main goal of this study is to evaluate the impact of physical incorporation of polyethylene glycol (PEG) into 5-fluorouracil (5-FU)-loaded polymeric nanoparticles (NPs). METHODS: The 5-FU-loaded NPs were prepared utilizing a simple double emulsion method using polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) with or without PEG 6000. The surface charge, particle size, and shape of NPs were evaluated by standard procedures. Both Fourier Transform Infrared Spectroscopy and X-ray diffraction spectra of the 5-FU loaded NPs were compared against the pure 5-FU. The in vitro release profile of 5-FU from the NPs was monitored by the dialysis tubing method. Cell death and apoptosis induction in response to 5-FU NP exposure were measured by MTT and Annexin-V/7-amino-actinomycin D (7-AAD) assays, respectively, in Daoy, HepG2, and HT-29 cancer cell lines. RESULTS: The 5-FU loaded NPs were found to be spherical in shape with size ranging between 176±6.7 and 253.9±8.6 nm. The zeta potential varied between -7.13± 0.13 and -27.06±3.18 mV, and the entrapment efficiency was between 31.96% and 74.09%. The in vitro release of the drug followed a two-phase mode characterized by rapid release in the first 8 hrs followed by a period of slow release up to 72 hrs with composition-based variable extents. Cells exposed to NPs demonstrated a significant cell death which correlated with the ratio of PEG in the formulations in Daoy and HepG2 cells but not in HT-29 cells. Formulations (F1-F3) significantly induced early apoptosis in HT-29 cell lines. CONCLUSION: The physical PEGylation significantly enhanced the entrapment and loading efficiencies of 5-FU into NPs formulated with PLGA and PCL. It also fostered the in vitro cytotoxicity of 5-FU-loaded NPs in both Daoy and HepG2 cells. Induction of early apoptosis was confirmed for some of the formulations.


Assuntos
Fluoruracila/farmacologia , Nanopartículas/química , Poliésteres/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Fluoruracila/química , Células HT29 , Humanos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Eletricidade Estática , Difração de Raios X
20.
Saudi J Biol Sci ; 26(5): 1089-1092, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31303845

RESUMO

Lepidium sativum (garden cress) seed oil was examined for its antimicrobial, antioxidant, and anti-inflammatory activities. The oil was obtained by hydrodistillation, where gas chromatography coupled with mass spectrometry that utilized to study its chemical composition. Microdilution method was used to test the antimicrobial effect of oil against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Klebsiella pneumoniae, and Candida albicans. The antioxidant activity was assessed by radical scavenging activity assay using 2,2-diphenyl-1-picrylhydrazyl radical. The major constituents found in the oil were 7,10-hexadecadienoic acid, 11-octadecenoic acid, 7,10,13-hexadecatrienoic acid, and behenic acid. The minimum inhibitory concentration (MIC) against all pathogens was 47.5 mg/ml, except for Salmonella enterica, which showed MIC of 90 mg/ml. The oil demonstrated antioxidant activity in a dose dependent pattern, with a half maximal inhibitory concentration (IC50) value of 40 mg/ml, and exerted anti-inflammatory activity, wherein 21% protection was shown at a concentration of 300 µg/ml. Thus, L. sativum seed oil shows antimicrobial, antioxidant, and anti-inflammatory properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA