Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Heliyon ; 10(5): e27598, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486768

RESUMO

Diabetes is a significant global health concern that increases the vulnerability to various chronic illnesses. In view of this issue, the current research aimed to examine the effects of administering an extract derived from the tubers of Cyperus rotundus L (CrE) on obesity, type 1 diabetes, and liver-kidney toxicity. Through the utilization of HPLC-DAD analysis, it was discovered that the extract contained several components, including quercetin (47.8%), luteolin glucoside (17%), luteolin (7.56%), apigenin-7-glucoside (6.29%), naringinin (4.52%), and seven others. In vitro experiments they have demonstrated that CrE effectively inhibited key digestive enzymes associated with obesity and type 2 diabetes, such as DPP-4, PTP1B, lipase, and α-amylase, as evidenced by their respective IC50 values are about 23, 51,83, and 67 µg/ml respectively. Furthermore, when diabetic rats were administered CrE, the activity of pancreatic enzymes linked to inflammation, namely 5-lipoxygenase (5-LO), hyaluronidase (HAase), and myeloperoxidase (MPO), was significantly suppressed by 48, 41, 75, and 47%, respectively. Moreover, CrE exhibited protective effects on pancreatic ß-cells by inhibiting the formation of thiobarbituric acid reactive substances (TBARS) by 65% and the induction of superoxide Dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities by 62, 108, and 112% respectively as compared to diabetic untreated rat. Additionally, CrE significantly inhibited the activities of intestinal, pancreatic, and serum lipase and α-amylase activities. In diabetic rats, CrE administration suppressed glycogen phosphorylase (GP) stimulated glycogen synthase (GS) activities by 45 and 30%; and this increased liver glycogen content by 45%. Furthermore, CrE modulated key hepatic enzymes involved in carbohydrate metabolism, including hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), glucose-6-phosphatase (G6P), and fructose-1,6-bisphosphatase (FBP). Notably, the average food and water intake (AFI and AWI) of diabetic rats treated with CrE was reduced by 15 and 16% respectively as compared to those without any treatment. Therefore, this study demonstrated the effectiveness of Cyperus rotundus tubers in preventing and treating obesity and diabetes.

2.
Bioinformation ; 19(9): 901-907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928494

RESUMO

Increased amounts of toxicants may cause sever health issues in humans as well as in aquatic life. Scientists are developing new technologies to combat these problems. Biological methods of detoxification are always beneficial for the environment. Pseudomonas fluorescens is known for its detoxification capacity. In this study Pseudomonas fluorescens stains were isolated from different locations of the Ha'il region, Saudia Arabia. The microbial strain AM-1 displayed resistance to heavy metals (Cr6+, Ni2+, Cd2+, Pb2+) and pesticides (BHC, 2,4-D, Mancozeb) at pollutant levels typical of highly contaminated areas. Additionally, AM-1 exhibited substantial detoxification potential, reducing toxicity by 40.67% for heavy metals and 47.4% for pesticides at 3x concentrations. These findings suggest that the AM-1 strain supports environmental remediation and pollution mitigation. Atomic absorption spectrometry (AAS) results exhibited bioremediation efficiency for metals Cr6+, Ni2+, and Pb2+ using immobilized cells of P. fluorescens AM-1 isolate, estimated to be 60.57%, 68.4%, and 53.93% respectively. These findings show that AM-1 strain has a potential role in bioremediation of water pollutants and may have future implications in wastewater treatment.

3.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959862

RESUMO

In a sustained search for novel potential drug candidates with multispectrum therapeutic application, a series of novel spirooxindoles was designed and synthesized via regioselective three-component reaction between isatin derivatives, 2-phenylglycine and diverse arylidene-imidazolidine-2,4-diones (Hydantoins). The suggested stereochemistry was ascertained by an X-ray diffraction study and NMR spectroscopy. The resulting tetracyclic heterocycles were screened for their in vitro and in vivo anti-inflammatory and analgesic activity and for their in vitro antimicrobial potency. In vitro antibacterial screening revealed that several derivatives exhibited remarkable growth inhibition against different targeted microorganisms. All tested compounds showed excellent activity against the Micrococccus luteus strain (93.75 µg/mL ≤ MIC ≤ 375 µg/mL) as compared to the reference drug tetracycline (MIC = 500 µg/mL). Compound 4e bearing a p-chlorophenyl group on the pyrrolidine ring exhibited the greatest antifungal potential toward Candida albicans and Candida krusei (MIC values of 23.43 µg/mL and 46.87 µg/mL, respectively) as compared to Amphotericin B (MIC = 31.25 and 62.50 µg/mL, respectively). The target compounds were also tested in vitro against the lipoxygenase-5 (LOX-5) enzyme. Compounds 4i and 4l showed significant inhibitory activity with IC50 = 1.09 mg/mL and IC50 = 1.01 mg/mL, respectively, more potent than the parent drug, diclofenac sodium (IC50 = 1.19 mg/mL). In addition, in vivo evaluation of anti-inflammatory and analgesic activity of these spirooxindoles were assessed through carrageenan-induced paw edema and acetic acid-induced writhing assays, respectively, revealing promising results. In silico molecular docking and predictive ADMET studies for the more active spirocompounds were also carried out.


Assuntos
Anti-Infecciosos , Hidantoínas , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios/química , Analgésicos/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Anticonvulsivantes/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569285

RESUMO

Thiosemicarbazones and their transition metal complexes are biologically active compounds and anticancer agents with versatile structural properties. In this contribution, the structural features and stability of four pyridoxal-thiosemicarbazone (PLTSC) complexes with Fe, Co, Ni, and Cu were investigated using the density functional theory and natural bond orbital approach. Special emphasis was placed on the analysis of the donor atom-metal interactions. The geometry of compounds and crystallographic structures were further examined by Hirshfeld surface analysis, and the main intermolecular interactions were outlined. It has been shown that the geometry and the number of PLTSC units in the structure determine the type and contribution of the specific interactions. The binding of all four complexes to bovine and human serum albumin was investigated through spectrofluorometric titration. The dependency of the thermodynamic parameters on the present metal ion and geometry was explained by the possible interactions through molecular docking simulations. The binding of complexes to DNA, as one of the possible ways the compounds could induce cell death, was examined by molecular docking. The cytotoxicity was measured towards HCT116, A375, MCF-7, A2780, and MCF5 cell lines, with Cu-PLTSC being the most active, as it had the highest affinity towards DNA and proteins.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Tiossemicarbazonas , Feminino , Animais , Bovinos , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligação Proteica , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Metais , DNA/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Piridoxal/farmacologia , Cobre/química
5.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956796

RESUMO

Alzheimer's disease (AD) is a chronic dysfunction of neurons in the brain leading to dementia. It is characterized by gradual mental failure, abnormal cognitive functioning, personality changes, diminished verbal fluency, and speech impairment. It is caused by neuronal injury in the cerebral cortex and hippocampal area of the brain. The number of individuals with AD is growing at a quick rate. The pathology behind AD is the progress of intraneuronal fibrillary tangles, accumulation of amyloid plaque, loss of cholinergic neurons, and decrease in choline acetyltransferase. Unfortunately, AD cannot be cured, but its progression can be delayed. Various FDA-approved inhibitors of cholinesterase enzyme such as rivastigmine, galantamine, donepezil, and NDMA receptor inhibitors (memantine), are available to manage the symptoms of AD. An exhaustive literature survey was carried out using SciFinder's reports from Alzheimer's Association, PubMed, and Clinical Trials.org. The literature was explored thoroughly to obtain information on the various available strategies to prevent AD. In the context of the present scenario, several strategies are being tried including the clinical trials for the treatment of AD. We have discussed pathophysiology, various targets, FDA-approved drugs, and various drugs in clinical trials against AD. The goal of this study is to shed light on current developments and treatment options, utilizing phytopharmaceuticals, nanomedicines, nutraceuticals, and gene therapy.


Assuntos
Doença de Alzheimer , Plantas Medicinais , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Humanos , Indanos/farmacologia , Nanotecnologia , Piperidinas/farmacologia , Rivastigmina
6.
J Enzyme Inhib Med Chem ; 36(1): 504-516, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33504239

RESUMO

In the current study, new thienopyrimidine conjugates bearing 1,2,3-triazole core and different sugar moieties have been designed and synthesized by Cu(I)-catalysed click dipolar cycloaddition. The cytotoxic activity of the synthesised conjugates 2, 5, 7, and 13-18 was studied against HCT-116 and MCF-7 cell lines by the MTT assay. The triazole glycosides 16 and 18 provided significant cytotoxic activities against HCT-116 cell lines comparable to that of doxorubicin and other studied compounds. The cytotoxic behaviour against MCF-7 exhibited that all the investigated compounds were more potent than doxorubicin. Moreover, all screened targets were evaluated against mutant EGFR kinase type L858R and the results revealed that the acetylated 1,2,3-triazole glycosides 13-18 exhibited excellent EGFR inhibitory activity in comparison with gefitinib. Furthermore, molecular modelling studies were performed to investigate the binding affinity of the most active compounds to EGFR enzyme.


Assuntos
Antineoplásicos/farmacologia , Glicosídeos/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Click , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Glicosídeos/química , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Relação Estrutura-Atividade , Triazóis/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA