Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18478, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122782

RESUMO

Inverse problems in biomedical image analysis represent a significant frontier in disease detection, leveraging computational methodologies and mathematical modelling to unravel complex data embedded within medical images. These problems include deducing the unknown properties of biological structures or tissues from the observed imaging data, presenting a unique challenge in decoding intricate biological phenomena. Regarding disease detection, this technique has played a critical role in optimizing diagnostic efficiency by extracting meaningful insights from different imaging modalities like molecular imaging, MRI, and CT scans. Inverse problems contribute to uncovering subtle abnormalities by employing iterative optimization techniques and sophisticated algorithms, enabling precise and early disease detection. Deep learning (DL) solutions have emerged as robust mechanisms for addressing inverse problems in biomedical image analysis, especially in disease recognition. Inverse problems involve reconstructing unknown structures or parameters from observed data, and the DL model excels in learning complex representations and mappings. This study develops a DL Solution for Inverse Problems in the Advanced Biomedical Image Analysis on Disease Detection (DLSIP-ABIADD) technique. The DLSIP-ABIADD technique exploits the DL approach to solve inverse problems and detect the presence of diseases on biomedical images. To solve the inverse problem, the DLSIP-ABIADD technique uses a direct mapping approach. Bilateral filtering (BF) is used for image preprocessing. Besides, the MobileNetv2 model derives feature vectors from the input images. Moreover, the Henry gas solubility optimization (HGSO) method is applied for optimal hyperparameter selection of the MobileNetv2 model. Furthermore, a bidirectional long short-term memory (BiLSTM) model is deployed to identify diseases in medical images. Extensive simulations have been involved to illustrate the better performance of the DLSIP-ABIADD technique. The experimentation outcomes stated that the DLSIP-ABIADD technique performs better than other models.


Assuntos
Algoritmos , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Assistida por Computador/métodos
2.
Health Inf Sci Syst ; 12(1): 35, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38764569

RESUMO

Gastrointestinal (GI) cancer detection includes the detection of cancerous or potentially cancerous lesions within the GI tract. Earlier diagnosis is critical for increasing the success of treatment and improving patient outcomes. Medical imaging plays a major role in diagnosing and detecting GI cancer. CT scans, endoscopy, MRI, ultrasound, and positron emission tomography (PET) scans can help detect lesions, abnormal masses, and changes in tissue structure. Artificial intelligence (AI) and machine learning (ML) methods are being gradually applied to medical imaging for cancer diagnosis. ML algorithms, including deep learning methodologies like convolutional neural network (CNN), are applied frequently for cancer diagnosis. These models learn features and patterns from labelled datasets to discriminate between normal and abnormal areas in medical images. This article presents a new Harbor Seal Whiskers Optimization Algorithm with Deep Learning based Medical Imaging Analysis for Gastrointestinal Cancer Detection (HSWOA-DLGCD) technique. The goal of the HSWOA-DLGCD algorithm is to explore the GI images for the cancer diagnosis. In order to accomplish this, the HSWOA-DLGCD system applies bilateral filtering (BF) approach for the removal of noise. In addition, the HSWOA-DLGCD technique makes use of HSWOA with Xception model for feature extraction. For cancer recognition, the HSWOA-DLGCD technique applies extreme gradient boosting (XGBoost) model. Finally, the parameters compared with the XGBoost system can be selected by moth flame optimization (MFO) system. The experimental results of the HSWOA-DLGCD technique could be verified on the Kvasir database. The simulation outcome demonstrated a best possible solution of the HSWOA-DLGCD method than other recent methods.

3.
Sci Rep ; 14(1): 3570, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347011

RESUMO

White blood cells (WBCs) play a vital role in immune responses against infections and foreign agents. Different WBC types exist, and anomalies within them can indicate diseases like leukemia. Previous research suffers from limited accuracy and inflated performance due to the usage of less important features. Moreover, these studies often focus on fewer WBC types, exaggerating accuracy. This study addresses the crucial task of classifying WBC types using microscopic images. This study introduces a novel approach using extensive pre-processing with data augmentation techniques to produce a more significant feature set to achieve more promising results. The study conducts experiments employing both conventional deep learning and transfer learning models, comparing performance with state-of-the-art machine and deep learning models. Results reveal that a pre-processed feature set and convolutional neural network classifier achieves a significantly better accuracy of 0.99. The proposed method demonstrates superior accuracy and computational efficiency compared to existing state-of-the-art works.


Assuntos
Leucemia , Leucócitos , Humanos , Redes Neurais de Computação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA