Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pain ; 165(5): 1121-1130, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015622

RESUMO

ABSTRACT: Although inflammation is known to play a role in knee osteoarthritis (KOA), inflammation-specific imaging is not routinely performed. In this article, we evaluate the role of joint inflammation, measured using [ 11 C]-PBR28, a radioligand for the inflammatory marker 18-kDa translocator protein (TSPO), in KOA. Twenty-one KOA patients and 11 healthy controls (HC) underwent positron emission tomography/magnetic resonance imaging (PET/MRI) knee imaging with the TSPO ligand [ 11 C]-PBR28. Standardized uptake values were extracted from regions-of-interest (ROIs) semiautomatically segmented from MRI data, and compared across groups (HC, KOA) and subgroups (unilateral/bilateral KOA symptoms), across knees (most vs least painful), and against clinical variables (eg, pain and Kellgren-Lawrence [KL] grades). Overall, KOA patients demonstrated elevated [ 11 C]-PBR28 binding across all knee ROIs, compared with HC (all P 's < 0.005). Specifically, PET signal was significantly elevated in both knees in patients with bilateral KOA symptoms (both P 's < 0.01), and in the symptomatic knee ( P < 0.05), but not the asymptomatic knee ( P = 0.95) of patients with unilateral KOA symptoms. Positron emission tomography signal was higher in the most vs least painful knee ( P < 0.001), and the difference in pain ratings across knees was proportional to the difference in PET signal ( r = 0.74, P < 0.001). Kellgren-Lawrence grades neither correlated with PET signal (left knee r = 0.32, P = 0.19; right knee r = 0.18, P = 0.45) nor pain ( r = 0.39, P = 0.07). The current results support further exploration of [ 11 C]-PBR28 PET signal as an imaging marker candidate for KOA and a link between joint inflammation and osteoarthritis-related pain severity.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Articulação do Joelho/metabolismo , Inflamação/diagnóstico por imagem , Dor , Receptores de GABA/metabolismo
2.
Brain Behav Immun ; 116: 259-266, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38081435

RESUMO

The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 'Pre-Pandemic', 28 'Pandemic') using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 ('Pre-Pandemic' cLBP) or between August 2020 and May 2022 ('Pandemic' cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = -0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.


Assuntos
COVID-19 , Dor Crônica , Adulto , Humanos , Pandemias , Dor Crônica/metabolismo , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Envelhecimento , Receptores de GABA/metabolismo
3.
Pain ; 165(1): 126-134, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578456

RESUMO

ABSTRACT: Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. Compared with healthy controls, patients with cLBP demonstrated lower absolute concentrations of NAA ( P = 0.0005) and Cho ( P < 0.05) and higher absolute concentrations of mIns ( P = 0.01) when controlling for age, as predicted by our previous work in KOA. In contrast to our KOA study, mIns levels in this population did not significantly correlate with pain measures (eg, pain severity or duration). However, exploratory analyses revealed that NAA levels in patients were negatively correlated with the severity of sleep disturbance ( P < 0.01), which was higher in patients compared with healthy controls ( P < 0.001). Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.


Assuntos
Dor Crônica , Dor Lombar , Dor Musculoesquelética , Doenças Reumáticas , Humanos , Dor Crônica/metabolismo , Dor Lombar/complicações , Dor Lombar/diagnóstico por imagem , Dor Musculoesquelética/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo
4.
Contemp Clin Trials ; 126: 107087, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657520

RESUMO

INTRODUCTION: Both preclinical studies, and more recent clinical imaging studies, suggest that glia-mediated neuroinflammation may be implicated in chronic pain, and therefore might be a potential treatment target. However, it is currently unknown whether modulating neuroinflammation effectively alleviates pain in humans. This trial tests the hypothesis that minocycline, an FDA-approved tetracycline antibiotic and effective glial cell inhibitor in animals, reduces neuroinflammation and may reduce pain symptoms in humans with chronic low back pain. METHODS AND ANALYSIS: This study is a randomized, double-blind, placebo-controlled clinical trial. Subjects, aged 18-75, with a confirmed diagnosis of chronic (≥ six months) low back pain (cLBP) and a self-reported pain rating of at least four out of ten (for at least half of the days during an average week) are enrolled via written, informed consent. Eligible subjects are randomized to receive a 14-day course of either active drug (minocycline) or placebo. Before and after treatment, subjects are scanned with integrated Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) using [11C]PBR28, a second-generation radiotracer for the 18 kDa translocator protein (TSPO), which is highly expressed in glial cells and thus a putative marker of neuroinflammation. Pain levels are evaluated via daily surveys, collected seven days prior to the start of medication, and throughout the 14 days of treatment. General linear models will be used to assess pain levels and determine the treatment effect on brain (and spinal cord) TSPO signal. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov (NCT03106740).


Assuntos
Dor Crônica , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/tratamento farmacológico , Minociclina/uso terapêutico , Doenças Neuroinflamatórias , Dor Crônica/diagnóstico por imagem , Dor Crônica/tratamento farmacológico , Método Duplo-Cego , Resultado do Tratamento , Receptores de GABA/metabolismo , Receptores de GABA/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Neuroimage Clin ; 36: 103199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137496

RESUMO

Amyotrophic lateral sclerosis (ALS) is a deadly neurodegenerative disorder affecting motor neurons in the spinal cord and brain. Studies have reported on atrophy within segments of the cervical cord, but we are not aware of previous investigations of the whole spinal cord. Herein we present our findings from a 3T MRI study involving 32 subjects (15 ALS participants and 17 healthy controls) characterizing cross-sectional area along the entire cord. We report atrophy of the cervical enlargement in ALS participants, but no evidence of atrophy of the thoracolumbar enlargement. These results suggest that MR-based analyses of the cervical cord may be sufficient for in vivo investigations of spinal cord atrophy in ALS, and that atrophy of the cervical enlargement (C4-C7) is a potential imaging marker for quantifying lower motor neuron degradation.


Assuntos
Esclerose Lateral Amiotrófica , Medula Cervical , Humanos , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/diagnóstico por imagem , Atrofia/patologia , Neurônios Motores/patologia , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia
6.
BMJ Open ; 12(9): e063613, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123113

RESUMO

INTRODUCTION: Chronic pain is a debilitating medical problem that is difficult to treat. Neuroinflammatory pathways have emerged as a potential therapeutic target, as preclinical studies have demonstrated that glial cells and neuroglial interactions play a role in the establishment and maintenance of pain. Recently, we used positron emission tomography (PET) to demonstrate increased levels of 18 kDa translocator protein (TSPO) binding, a marker of glial activation, in patients with chronic low back pain (cLBP). Cannabidiol (CBD) is a glial inhibitor in animal models, but studies have not assessed whether CBD reduces neuroinflammation in humans. The principal aim of this trial is to evaluate whether CBD, compared with placebo, affects neuroinflammation, as measured by TSPO levels. METHODS AND ANALYSIS: This is a double-blind, randomised, placebo-controlled, phase II clinical trial. Eighty adults (aged 18-75) with cLBP for >6 months will be randomised to either an FDA-approved CBD medication (Epidiolex) or matching placebo for 4 weeks using a dose-escalation design. All participants will undergo integrated PET/MRI at baseline and after 4 weeks of treatment to evaluate neuroinflammation using [11C]PBR28, a second-generation radioligand for TSPO. Our primary hypothesis is that participants randomised to CBD will demonstrate larger reductions in thalamic [11C]PBR28 signal compared with those receiving placebo. We will also assess the effect of CBD on (1) [11C]PBR28 signal from limbic regions, which our prior work has linked to depressive symptoms and (2) striatal activation in response to a reward task. Additionally, we will evaluate self-report measures of cLBP intensity and bothersomeness, depression and quality of life at baseline and 4 weeks. ETHICS AND DISSEMINATION: This protocol is approved by the Massachusetts General Brigham Human Research Committee (protocol number: 2021P002617) and FDA (IND number: 143861) and registered with ClinicalTrials.gov. Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER: NCT05066308; ClinicalTrials.gov.


Assuntos
Canabidiol , Dor Lombar , Adulto , Encéfalo/diagnóstico por imagem , Canabidiol/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/tratamento farmacológico , Doenças Neuroinflamatórias , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de GABA
7.
Artigo em Inglês | MEDLINE | ID: mdl-35140142

RESUMO

BACKGROUND AND OBJECTIVES: The presence of HIV in the CNS has been related to chronic immune activation and cognitive dysfunction. The aim of this work was to investigate (1) the presence of neuroinflammation in aviremic people with HIV (PWH) on therapy and in nontreated aviremic PWH (elite controllers [ECs]) using a translocator protein 18 kDa radioligand; (2) the relationship between neuroinflammation and cognitive function in aviremic PWH; and (3) the relationship between [11C]-PBR28 signal and quantitative MRI (qMRI) measures of brain tissue integrity such as T1 and T2 relaxation times (rts). METHODS: [11C]-PBR28 (standard uptake value ratio, SUVR) images were generated in 36 participants (14 PWH, 6 ECs, and 16 healthy controls) using a statistically defined pseudoreference region. Group comparisons of [11C]-PBR28 SUVR were performed using region of interest-based and voxelwise analyses. The relationship between inflammation, qMRI measures, and cognitive function was studied. RESULTS: In region of interest analyses, ECs exhibited significantly lower [11C]-PBR28 signal in the thalamus, putamen, superior temporal gyrus, prefrontal cortex, and cerebellum compared with the PWH. In voxelwise analyses, differences were observed in the thalamus, precuneus cortex, inferior temporal gyrus, occipital cortex, cerebellum, and white matter (WM). [11C]-PBR28 signal in the WM and superior temporal gyrus was related to processing speed and selective attention in PWH. In a subset of PWH (n = 12), [11C]-PBR28 signal in the thalamus and WM regions was related to a decrease in T2 rt and to an increase in T1 rt suggesting a colocalization of increased glial metabolism, decrease in microstructural integrity, and iron accumulation. DISCUSSION: This study casts a new light onto the role of neuroinflammation and related microstructural alterations of HIV infection in the CNS and shows that ECs suppress neuroinflammation more effectively than PWH on therapy.


Assuntos
Antirretrovirais/farmacologia , Encefalopatias , Disfunção Cognitiva , Infecções por HIV , Paciente HIV Positivo não Progressor , Neuroimagem , Doenças Neuroinflamatórias , Idoso , Encefalopatias/diagnóstico por imagem , Encefalopatias/tratamento farmacológico , Encefalopatias/patologia , Encefalopatias/virologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/fisiopatologia , Feminino , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Doenças Neuroinflamatórias/diagnóstico por imagem , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Tomografia por Emissão de Pósitrons
8.
Brain Behav Immun ; 102: 89-97, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181440

RESUMO

While COVID-19 research has seen an explosion in the literature, the impact of pandemic-related societal and lifestyle disruptions on brain health among the uninfected remains underexplored. However, a global increase in the prevalence of fatigue, brain fog, depression and other "sickness behavior"-like symptoms implicates a possible dysregulation in neuroimmune mechanisms even among those never infected by the virus. We compared fifty-seven 'Pre-Pandemic' and fifteen 'Pandemic' datasets from individuals originally enrolled as control subjects for various completed, or ongoing, research studies available in our records, with a confirmed negative test for SARS-CoV-2 antibodies. We used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography / magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation. Healthy individuals examined after the enforcement of 2020 lockdown/stay-at-home measures demonstrated elevated brain levels of two independent neuroinflammatory markers (the 18 kDa translocator protein, TSPO, and myoinositol) compared to pre-lockdown subjects. The serum levels of two inflammatory markers (interleukin-16 and monocyte chemoattractant protein-1) were also elevated, although these effects did not reach statistical significance after correcting for multiple comparisons. Subjects endorsing higher symptom burden showed higher TSPO signal in the hippocampus (mood alteration, mental fatigue), intraparietal sulcus and precuneus (physical fatigue), compared to those reporting little/no symptoms. Post-lockdown TSPO signal changes were spatially aligned with the constitutive expression of several genes involved in immune/neuroimmune functions. This work implicates neuroimmune activation as a possible mechanism underlying the non-virally-mediated symptoms experienced by many during the COVID-19 pandemic. Future studies will be needed to corroborate and further interpret these preliminary findings.


Assuntos
COVID-19 , Pandemias , Biomarcadores/metabolismo , Encéfalo/metabolismo , Controle de Doenças Transmissíveis , Humanos , Doenças Neuroinflamatórias , Receptores de GABA/metabolismo , SARS-CoV-2
9.
Brain ; 145(3): 1098-1110, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528069

RESUMO

We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine and Gulf War illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18-kDa translocator protein (TSPO), which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple aetiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct 'neuroinflammatory signatures'. To explore this hypothesis further, we tested whether neuroinflammatory signal can characterize putative aetiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. 'radicular' versus 'axial' back pain). Fifty-four patients with chronic low back pain, 26 with axial back pain [43.7 ± 16.6 years old (mean ± SD)] and 28 with radicular back pain (48.3 ± 13.2 years old), underwent PET/MRI with 11C-PBR28, a second-generation radioligand for TSPO. 11C-PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the 11C-PBR28 data (i) to functionally localize the primary somatosensory cortex back and leg subregions; and (ii) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of 'fibromyalgianess' (i.e. the degree of pain centralization, or 'nociplastic pain'). Furthermore, statistical mediation models were used to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, 11C-PBR28 PET signal and functional connectivity to the thalamus were: (i) higher in radicular compared to axial back pain patients; (ii) positively correlated with each other; (iii) positively correlated with fibromyalgianess scores, across groups; and finally (iv) fibromyalgianess mediated the association between 11C-PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of 'neuroinflammatory signatures' that are accompanied by neurophysiological changes and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about interindividual variability in neuroimmune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches.


Assuntos
Dor Crônica , Dor Lombar , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dor Crônica/diagnóstico por imagem , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/metabolismo , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
10.
Brain Behav Immun Health ; 18: 100364, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34693367

RESUMO

About a third of all United States veterans who served in the 1991 Gulf War (GW) report a range of chronic health symptoms including fatigue, neurocognitive symptoms, and musculoskeletal pain. There is growing evidence supporting the detrimental effects of maladaptive neuroimmune reactions in this multi-symptom illness. Indeed, recent studies using positron emission tomography (PET) using the radioligand [11C]PBR28, which binds the neuroinflammation marker 18 â€‹kDa translocator protein (TSPO), and diffusion magnetic resonance imaging (dMRI) have independently identified the anterior cingulate (ACC) and midcingulate cortices (MCC) as key regions for differentiating GWI veterans from healthy controls (HC). Here, we used integrated (i.e., simultaneous) PET/MRI imaging techniques, paired with dMRI processing methods (neurite density imaging, NDI, and free-water diffusion tensor model to single-shell high-order dMRI), to directly evaluate the relationship between ACC and MCC microstructural tissue parameters, TSPO signal and clinical parameters in the same cohorts of 10 GWI veterans and 19 â€‹HCs. Within the regions evaluated, TSPO signal elevations were associated with restricted diffusivity in the extracellular compartment, while clinical measures were best explained by neurite density and cellular structure complexity measures. Our study is the first to provide evidence of a relationship between PET and dMRI modalities in GWI and suggests that microstructural changes in the ACC and MCC are correlated to mood symptoms and cognitive performances in GWI veterans.

11.
Pain ; 162(7): 2014-2023, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470749

RESUMO

ABSTRACT: The weak association between disability levels and "peripheral" (ie, knee) findings suggests that central nervous system alterations may contribute to the pathophysiology of knee osteoarthritis (KOA). Here, we evaluated brain metabolite alterations in patients with KOA, before and after total knee arthroplasty (TKA), using 1H-magnetic resonance spectroscopy (MRS). Thirty-four presurgical patients with KOA and 13 healthy controls were scanned using a PRESS sequence (TE = 30 ms, TR = 1.7 seconds, voxel size = 15 × 15 × 15 mm). In addition, 13 patients were rescanned 4.1 ± 1.6 (mean ± SD) weeks post-TKA. When using creatine (Cr)-normalized levels, presurgical KOA patients demonstrated lower N-acetylaspartate (NAA) (P < 0.001), higher myoinositol (mIns) (P < 0.001), and lower Choline (Cho) (P < 0.05) than healthy controls. The mIns levels were positively correlated with pain severity scores (r = 0.37, P < 0.05). These effects reached statistical significance also using water-referenced concentrations, except for the Cho group differences (P ≥ 0.067). Post-TKA patients demonstrated an increase in NAA (P < 0.01), which returned to the levels of healthy controls (P > 0.05), irrespective of metric. In addition, patients demonstrated postsurgical increases in Cr-normalized (P < 0.001), but not water-referenced mIns, which were proportional to the NAA/Cr increases (r = 0.61, P < 0.05). Because mIns is commonly regarded as a glial marker, our results are suggestive of a possible dual role for neuroinflammation in KOA pain and post-TKA recovery. Moreover, the apparent postsurgical normalization of NAA, a putative marker of neuronal integrity, might implicate mitochondrial dysfunction, rather than neurodegenerative processes, as a plausible pathophysiological mechanism in KOA. More broadly, our results add to a growing body of literature suggesting that some pain-related brain alterations can be reversed after peripheral surgical treatment.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Ácido Aspártico , Colina , Creatina , Humanos , Espectroscopia de Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia
12.
J Pain Res ; 13: 2223-2235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943915

RESUMO

BACKGROUND: Chronic pain, particularly that following nerve injury, can occur in the absence of external stimuli. Although the ongoing pain is sometimes continuous, in many individuals the intensity of their pain fluctuates. Experimental animal studies have shown that the brainstem contains circuits that modulate nociceptive information at the primary afferent synapse and these circuits are involved in maintaining ongoing continuous neuropathic pain. However, it remains unknown if these circuits are involved in regulating fluctuations of ongoing neuropathic pain in humans. METHODS: We used functional magnetic resonance imaging to determine whether in 19 subjects with painful trigeminal neuropathy, brainstem pain-modulation circuitry function changes according to moment-to-moment fluctuations in spontaneous pain intensity as rated online over a 12-minute period. RESULTS: We found that when pain intensity was spontaneously high, connectivity strengths between regions of the brainstem endogenous pain-modulating circuitry-the midbrain periaqueductal gray, rostral ventromedial medulla (RVM), and the spinal trigeminal nucleus (SpV)-were high, and vice-versa (when pain was low, connectivity was low). Additionally, sliding-window connectivity analysis using 50-second windows revealed a significant positive relationship between ongoing pain intensity and RVM-SpV connectivity over the duration of the 12-minute scan. CONCLUSION: These data reveal that moment-to-moment changes in brainstem pain-modulation circuitry functioning likely contribute to fluctuations in spontaneous pain intensity in individuals with chronic neuropathic pain.

13.
Brain Behav Immun ; 87: 498-507, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32027960

RESUMO

Gulf War Illness (GWI) is a chronic disorder affecting approximately 30% of the veterans who served in the 1991 Gulf War. It is characterised by a constellation of symptoms including musculoskeletal pain, cognitive problems and fatigue. The cause of GWI is not definitively known but exposure to neurotoxicants, the prophylactic use of pyridostigmine bromide (PB) pills, and/or stressors during deployment have all been suspected to play some pathogenic role. Recent animal models of GWI have suggested that neuroinflammatory mechanisms may be implicated, including a dysregulated activation of microglia and astrocytes. However, neuroinflammation has not previously been directly observed in veterans with GWI. To measure GWI-related neuroinflammation in GW veterans, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the 18 kDa translocator protein (TSPO), a protein upregulated in activated microglia/macrophages and astrocytes. Veterans with GWI (n = 15) and healthy controls (HC, n = 33, including a subgroup of healthy GW veterans, HCVET, n = 8), were examined using integrated [11C]PBR28 PET/MRI. Standardized uptake values normalized by occipital cortex signal (SUVR) were compared across groups and against clinical variables and circulating inflammatory cytokines (TNF-α, IL-6 and IL-1ß). SUVR were validated against volume of distribution ratio (n = 13). Whether compared to the whole HC group, or only the HCVET subgroup, veterans with GWI demonstrated widespread cortical elevations in [11C]PBR28 PET signal, in areas including precuneus, prefrontal, primary motor and somatosensory cortices. There were no significant group differences in the plasma levels of the inflammatory cytokines evaluated. There were also no significant correlations between [11C]PBR28 PET signal and clinical variables or circulating inflammatory cytokines. Our study provides the first direct evidence of brain upregulation of the neuroinflammatory marker TSPO in veterans with GWI and supports the exploration of neuroinflammation as a therapeutic target for this disorder.


Assuntos
Síndrome do Golfo Pérsico , Veteranos , Astrócitos , Guerra do Golfo , Humanos , Síndrome do Golfo Pérsico/diagnóstico por imagem , Brometo de Piridostigmina , Receptores de GABA
14.
J Pain Res ; 12: 2427-2439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447580

RESUMO

Background: Chronic neuropathic pain (NP) is a complex disease that results from damage or presumed damage to the somatosensory nervous system. Current treatment regimens are often ineffective. The major impediment in developing effective treatments is our limited understanding of the underlying mechanisms. Preclinical evidence suggests that glial changes are crucial for the development of NP and a recent study reported oscillatory activity differences within the ascending pain pathway at frequencies similar to that of cyclic gliotransmission in NP. Furthermore, there is evidence that glial modifying medications may be effective in treating NP. The aim of this Phase I open-label clinical trial is to determine whether glial modifying medication palmitoylethanolamide (PEA) will reduce NP and whether this is associated with reductions in oscillatory activity within the pain pathway. Methods: We investigated whether 6 weeks of PEA treatment would reduce pain and infra-slow oscillatory activity within the ascending trigeminal pathway in 22 individuals (17 females) with chronic orofacial NP. Results: PEA reduced pain in 16 (73%) of the 22 subjects, 11 subjects showed pain reduction of over 20%. Whilst both the responders and non-responders showed reductions in infra-slow oscillatory activity where orofacial nociceptor afferents terminate in the brainstem, only responders displayed reductions in the thalamus. Furthermore, functional connections between the brainstem and thalamus were altered only in responders. Conclusion: PEA is effective at relieving NP. This reduction is coupled to a reduction in resting oscillations along the ascending pain pathway that are likely driven by rhythmic astrocytic gliotransmission.

15.
Hum Brain Mapp ; 39(5): 1945-1956, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341331

RESUMO

Recurrent thalamocortical connections are integral to the generation of brain rhythms and it is thought that the inhibitory action of the thalamic reticular nucleus is critical in setting these rhythms. Our work and others' has suggested that chronic pain that develops following nerve injury, that is, neuropathic pain, results from altered thalamocortical rhythm, although whether this dysrhythmia is associated with thalamic inhibitory function remains unknown. In this investigation, we used electroencephalography and magnetic resonance spectroscopy to investigate cortical power and thalamic GABAergic concentration in 20 patients with neuropathic pain and 20 pain-free controls. First, we found thalamocortical dysrhythmia in chronic orofacial neuropathic pain; patients displayed greater power than controls over the 4-25 Hz frequency range, most marked in the theta and low alpha bands. Furthermore, sensorimotor cortex displayed a strong positive correlation between cortical power and pain intensity. Interestingly, we found no difference in thalamic GABA concentration between pain subjects and control subjects. However, we demonstrated significant linear relationships between thalamic GABA concentration and enhanced cortical power in pain subjects but not controls. Whilst the difference in relationship between thalamic GABA concentration and resting brain rhythm between chronic pain and control subjects does not prove a cause and effect link, it is consistent with a role for thalamic inhibitory neurotransmitter release, possibly from the thalamic reticular nucleus, in altered brain rhythms in individuals with chronic neuropathic pain.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Neuralgia/patologia , Descanso , Tálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Idoso , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuralgia/diagnóstico por imagem , Adulto Jovem
16.
J Neurosci ; 38(2): 465-473, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29175957

RESUMO

Preclinical investigations have suggested that altered functioning of brainstem pain-modulation circuits may be crucial for the maintenance of some chronic pain conditions. While some human psychophysical studies show that patients with chronic pain display altered pain-modulation efficacy, it remains unknown whether brainstem pain-modulation circuits are altered in individuals with chronic pain. The aim of the present investigation was to determine whether, in humans, chronic pain following nerve injury is associated with altered ongoing functioning of the brainstem descending modulation systems. Using resting-state functional magnetic resonance imaging, we found that male and female patients with chronic neuropathic orofacial pain show increased functional connectivity between the rostral ventromedial medulla (RVM) and other brainstem pain-modulatory regions, including the ventrolateral periaqueductal gray (vlPAG) and locus ceruleus (LC). We also identified an increase in RVM functional connectivity with the region that receives orofacial nociceptor afferents, the spinal trigeminal nucleus. In addition, the vlPAG and LC displayed increased functional connectivity strengths with higher brain regions, including the hippocampus, nucleus accumbens, and anterior cingulate cortex, in individuals with chronic pain. These data reveal that chronic pain is associated with altered ongoing functioning within the endogenous pain-modulation network. These changes may underlie enhanced descending facilitation of processing at the primary synapse, resulting in increased nociceptive transmission to higher brain centers. Further, our findings show that higher brain regions interact with the brainstem modulation system differently in chronic pain, possibly reflecting top-down engagement of the circuitry alongside altered reward processing in pain conditions.SIGNIFICANCE STATEMENT Experimental animal models and human psychophysical studies suggest that altered functioning of brainstem pain-modulation systems contributes to the maintenance of chronic pain. However, the function of this circuitry has not yet been explored in humans with chronic pain. In this study, we report that individuals with orofacial neuropathic pain show altered functional connectivity between regions within the brainstem pain-modulation network. We suggest that these changes reflect largely central mechanisms that feed back onto the primary nociceptive synapse and enhance the transfer of noxious information to higher brain regions, thus contributing to the constant perception of pain. Identifying the mechanisms responsible for the maintenance of neuropathic pain is imperative for the development of more efficacious therapies.


Assuntos
Tronco Encefálico/fisiopatologia , Dor Crônica/fisiopatologia , Vias Neurais/fisiopatologia , Neuralgia/fisiopatologia , Doenças do Nervo Trigêmeo/fisiopatologia , Adulto , Idoso , Encéfalo/fisiopatologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
J Neurosci ; 36(3): 1008-18, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791228

RESUMO

The neural mechanisms underlying the development and maintenance of chronic neuropathic pain remain unclear. Evidence from human investigations suggests that neuropathic pain is associated with altered thalamic burst firing and thalamocortical dysrhythmia. Additionally, experimental animal investigations show that neuropathic pain is associated with altered infra-slow (<0.1 Hz) frequency oscillations within the dorsal horn and somatosensory thalamus. The aim of this investigation was to determine whether, in humans, neuropathic pain was also associated with altered infra-slow oscillations within the ascending "pain" pathway. Using resting-state functional magnetic resonance imaging, we found that individuals with orofacial neuropathic pain have increased infra-slow oscillatory activity throughout the ascending pain pathway, including within the spinal trigeminal nucleus, somatosensory thalamus, thalamic reticular nucleus, and primary somatosensory cortex. Furthermore, these infra-slow oscillations were temporally coupled across these multiple sites and occurred at frequencies similar to calcium waves in activated astrocytes. The region encompassing the spinal trigeminal nucleus also displayed increased regional homogeneity, consistent with a local spread of neural activity by astrocyte activation. In contrast, no increase in oscillatory behavior within the ascending pain pathway occurred during acute noxious stimuli in healthy individuals. These data reveal increased oscillatory activity within the ascending pain pathway that likely underpins increased thalamocortical oscillatory activity, a self-sustaining thalamocortical dysrhythmia, and the constant perception of pain. Significance statement: Chronic neuropathic pain is associated with altered thalamic firing and thalamocortical dysrhythmia. The mechanisms responsible for these changes remain unknown. In this study, we report in individuals with neuropathic pain increased oscillatory neural activity within the ascending pain pathway with evidence that these changes result from altered neural-astrocyte coupling. We propose a series of neural and glial events after nerve injury that result in the generation of altered thalamocortical activity and a persistent neuropathic pain state. Defining the underlying mechanisms responsible for neuropathic pain is critical if we are to develop more effective treatment regimens.


Assuntos
Dor Crônica/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Neuralgia/fisiopatologia , Medição da Dor/métodos , Periodicidade , Adulto , Dor Crônica/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Neuralgia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA