RESUMO
The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.
Assuntos
Doença de Alzheimer , Análise de Célula Única , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Microglia/metabolismo , Idoso de 80 Anos ou mais , Oligodendroglia/metabolismo , Pessoa de Meia-Idade , Imunoglobulina G/metabolismo , Redes Reguladoras de Genes , Análise de Sequência de RNA , Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão GênicaRESUMO
Resistance training (RT) remains the most effective treatment for age-related declines in muscle mass. However, many older adults experience attenuated muscle hypertrophy in response to RT when compared with younger adults. This may be attributed to underlying molecular processes that are dysregulated by aging and exacerbated by improperly prescribed RT weekly volume, intensity, and/or frequency doses. MicroRNAs (miRNAs) are key epigenetic regulators that impact signaling pathways and protein expression within cells, are dynamic and responsive to exercise stimuli, and are often dysregulated in diseases. In this study, we used untargeted miRNA-seq to examine miRNA in skeletal muscle and serum-derived exosomes of older adults (n = 18, 11 M/7 F, 66 ± 1 yr) who underwent three times per wk RT for 30 wk [e.g., high intensity three times/wk (HHH, n = 9) or alternating high-low-high (HLH) intensity (n = 9)], after a standardized 4-wk washin. Within each tissue, miRNAs were clustered into modules based on pairwise correlation using weighted gene correlation network analysis (WGCNA). Modules were tested for association with the magnitude of RT-induced thigh lean mass (TLM) change [as measured by dual-energy X-ray absorptiometry (DXA)]. Although no modules were unique to training dose, we identified miRNA modules in skeletal muscle associated with TLM gains irrespective of exercise dose. Using miRNA-target interactions, we analyzed key miRNAs in significant modules for their potential regulatory involvement in biological pathways. Findings point toward potential miRNAs that may be informative biomarkers and could also be evaluated as potential therapeutic targets as an adjuvant to RT to maximize skeletal muscle mass accrual in older adults.NEW & NOTEWORTHY In this work, we identified a set of microRNAs correlated with thigh lean mass gains in a group of older adults. To our knowledge, this is the first time these microRNAs have been identified as novel predictive biomarkers correlating with lean mass gains in aging adults. As biomarkers, these may help interventionalists identify older individuals that are positively responding to an exercise intervention.
Assuntos
MicroRNAs , Músculo Esquelético , Treinamento Resistido , Coxa da Perna , Humanos , Treinamento Resistido/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Idoso , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Feminino , Envelhecimento/fisiologia , Envelhecimento/genética , Exossomos/metabolismo , Pessoa de Meia-Idade , Composição Corporal/fisiologiaRESUMO
Cerebrospinal fluid (CSF) matrix biomarkers have become increasingly valuable surrogate markers of neuropsychiatric diseases in research and clinical practice. In contrast, CSF cells have been rarely investigated due to their relative scarcity and fragility, and lack of common collection and cryopreservation protocols, with limited exceptions for neurooncology and primary immune-based diseases like multiple sclerosis. the advent of a microfluidics-based multi-omics approach to studying individual cells has allowed for the study of cellular phenotyping, intracellular dynamics, and intercellular relationships that provide multidimensionality unable to be obtained through acellular fluid-phase analyses. challenges to cell-based research include site-to-site differences in handling, storage, and thawing methods, which can lead to inaccuracy and inter-assay variability. In the present study, we performed single-cell RNA sequencing (10x Genomics) on fresh or previously cryopreserved human CSF samples from three alternative cryopreservation methods: Fetal Bovine Serum with Dimethyl sulfoxide (FBS/DMSO), FBS/DMSO after a DNase step (a step often included in epigenetic studies), and cryopreservation using commercially available Recovery© media. In comparing relative differences between fresh and cryopreserved samples, we found little effect of the cryopreservation method on being able to resolve donor-linked cell type proportions, markers of cellular stress, and overall gene expression at the single-cell level, whereas donor-specific differences were readily discernable. We further demonstrate the compatibility of fresh and cryopreserved CSF immune cell sequencing using biologically relevant sexually dimorphic gene expression differences by donor. Our findings support the utility and interchangeability of FBS/DMSO and Recovery cryopreservation with fresh sample analysis, providing a methodological grounding that will enable researchers to further expand our understanding of the CSF immune cell contributions to neurological and psychiatric disease.
Assuntos
Crioprotetores , Dimetil Sulfóxido , Humanos , Dimetil Sulfóxido/farmacologia , Crioprotetores/farmacologia , Células Cultivadas , Criopreservação/métodos , Análise de Célula Única , Sobrevivência CelularRESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.
RESUMO
Alzheimer's disease (AD), due to its multifactorial nature and complex etiology, poses challenges for research, diagnosis, and treatment, and impacts millions worldwide. To address the need for minimally invasive, repeatable measures that aid in AD diagnosis and progression monitoring, studies leveraging RNAs associated with extracellular vesicles (EVs) in human biofluids have revealed AD-associated changes. However, the validation of AD biomarkers has suffered from the collection of samples from differing points in the disease time course or a lack of confirmed AD diagnoses. Here, we integrate clinical diagnosis and postmortem pathology data to form more accurate experimental groups and use small RNA sequencing to show that EVs from plasma can serve as a potential source of RNAs that reflect disease-related changes. Importantly, we demonstrated that these changes are identifiable in the EVs of preclinical patients, years before symptom manifestation, and that machine learning models based on differentially expressed RNAs can help predict disease conversion or progression. This research offers critical insight into early disease biomarkers and underscores the significance of accounting for disease progression and pathology in human AD studies.
Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Vesículas Extracelulares/patologia , Diagnóstico Precoce , BiomarcadoresRESUMO
BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.
Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Feminino , Fenótipo , Locos de Características Quantitativas , Pleiotropia Genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para DoençaRESUMO
The emergence of technologies that can support high-throughput profiling of single cell transcriptomes offers to revolutionize the study of brain tissue from persons with and without Alzheimer's disease (AD). Integration of these data with additional complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link observed cell subpopulations and molecular network features within a broader disease-relevant context. We report here single nucleus RNA sequencing (snRNA-seq) profiles generated from superior frontal gyrus cortical tissue samples from 101 exceptionally well characterized, aged subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in peripheral hematological lab parameters, with these observations replicated in an independent, prospective cohort study of ageing and dementia. We also observed an AD-associated CD83(+) microglial subtype with unique molecular networks that encompass many known regulators of AD-relevant microglial biology, and which are associated with immunoglobulin IgG4 production in the transverse colon. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal novel disease biology. The transcriptomic, genetic, phenotypic, and network data resources described within this study are available for access and utilization by the scientific community.
RESUMO
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Proteinopatias TDP-43 , Animais , Humanos , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Neurônios Motores/metabolismo , Doença de Pick/patologia , RNA Mensageiro , Proteinopatias TDP-43/patologiaRESUMO
The C9ORF72-linked diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by the nuclear depletion and cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43). Recent studies have shown that the loss of TDP-43 function leads to the inclusion of cryptic exons (CE) in several RNA transcript targets of TDP-43. Here, we show for the first time the detection of CEs in a single-nuclei RNA sequencing (snRNA-seq) dataset obtained from frontal and occipital cortices of C9ORF72 patients that phenotypically span the ALS-FTD disease spectrum. We assessed each cellular cluster for detection of recently described TDP-43-induced CEs. Transcripts containing CEs in the genes STMN2 and KALRN were detected in the frontal cortex of all C9ORF72 disease groups with the highest frequency in excitatory neurons in the C9ORF72-FTD group. Within the excitatory neurons, the cluster with the highest proportion of cells containing a CE had transcriptomic similarities to von Economo neurons, which are known to be vulnerable to TDP-43 pathology and selectively lost in C9ORF72-FTD. Differential gene expression and pathway analysis of CE-containing neurons revealed multiple dysregulated metabolic processes. Our findings reveal novel insights into the transcriptomic changes of neurons vulnerable to TDP-43 pathology.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Transcriptoma , Doença de Pick/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Análise de Sequência de RNARESUMO
While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.
RESUMO
Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples). Computational analysis and experimental validation identified exRBPs in plasma, serum, saliva, urine, cerebrospinal fluid, and cell-culture-conditioned medium. exRBPs carry exRNA transcripts from small non-coding RNA biotypes, including microRNA (miRNA), piRNA, tRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, and lncRNA, as well as protein-coding mRNA fragments. Computational deconvolution of exRBP RNA cargo reveals associations of exRBPs with extracellular vesicles, lipoproteins, and ribonucleoproteins across human biofluids. Overall, we mapped the distribution of exRBPs across human biofluids, presenting a resource for the community.
RESUMO
The Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD) is an international collaboration producing fundamental resources for Parkinson disease (PD). FOUNDIN-PD generated a multi-layered molecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA) neurons, a major affected cell type in PD. The lines were derived from the Parkinson's Progression Markers Initiative study, which included participants with PD carrying monogenic PD variants, variants with intermediate effects, and variants identified by genome-wide association studies and unaffected individuals. We generated genetic, epigenetic, regulatory, transcriptomic, and longitudinal cellular imaging data from iPSC-derived DA neurons to understand molecular relationships between disease-associated genetic variation and proximate molecular events. These data reveal that iPSC-derived DA neurons provide a valuable cellular context and foundational atlas for modeling PD genetic risk. We have integrated these data into a FOUNDIN-PD data browser as a resource for understanding the molecular pathogenesis of PD.
RESUMO
Acute exercise elicits dynamic transcriptional changes that, when repeated, form the fundamental basis of health, resilience, and performance adaptations. While moderate-intensity endurance training combined with conventional resistance training (traditional, TRAD) is often prescribed and recommended by public health guidance, high-intensity training combining maximal-effort intervals with intensive, limited-rest resistance training is a time-efficient alternative that may be used tactically (HITT) to confer similar benefits. Mechanisms of action of these distinct stimuli are incompletely characterized and have not been directly compared. We assessed transcriptome-wide responses in skeletal muscle and circulating extracellular vesicles (EVs) to a single exercise bout in young adults randomized to TRAD (n = 21, 12 M/9 F, 22 ± 3 yr) or HITT (n = 19, 11 M/8 F, 22 ± 2 yr). Next-generation sequencing captured small, long, and circular RNA in muscle and EVs. Analysis identified differentially expressed transcripts (|log2FC|>1, FDR ≤ 0.05) immediately (h0, EVs only), h3, and h24 postexercise within and between exercise protocols. In aaddition, all apparently responsive transcripts (FDR < 0.2) underwent singular value decomposition to summarize data structures into latent variables (LVs) to deconvolve molecular expression circuits and interregulatory relationships. LVs were compared across time and exercise protocol. TRAD, a longer but less intense stimulus, generally elicited a stronger transcriptional response than HITT, but considerable overlap and key differences existed. Findings reveal shared and unique molecular responses to the exercise stimuli and lay groundwork toward establishing relationships between protein-coding genes and lesser-understood transcripts that serve regulatory roles following exercise. Future work should advance the understanding of these circuits and whether they repeat in other populations or following other types of exercise/stress.NEW & NOTEWORTHY We examined small and long transcriptomics in skeletal muscle and serum-derived extracellular vesicles before and after a single exposure to traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found more consistent protein-coding gene responses to TRAD, whereas HITT elicited differential expression of microRNA enriched in brain regions. Follow-up analysis revealed relationships and temporal dynamics across transcript networks, highlighting potential avenues for research into mechanisms of exercise response and adaptation.
Assuntos
Treinamento Resistido , Transcriptoma , Humanos , Adulto Jovem , Transcriptoma/genética , Exercício Físico/fisiologia , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismoRESUMO
The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database. ERCC2 has established several Working Groups (Resource Sharing, Reagent Development, Data Analysis and Coordination, Technology Development, nomenclature, and Scientific Outreach) to promote collaboration between ERCC2 members and the broader scientific community. We expect that ERCC2's current and future achievements will significantly improve our understanding of exRNA biology and the development of accurate and efficient exRNA-based diagnostic, prognostic, and theranostic biomarker assays.
RESUMO
One promising goal for utilizing the molecular information circulating in biofluids is the discovery of clinically useful biomarkers. Extracellular RNAs (exRNAs) are one of the most diverse classes of molecular cargo, easily assayed by sequencing and with expressions that rapidly change in response to subject status. Despite diverse exRNA cargo, most evaluations from biofluids have focused on small RNA sequencing and analysis, specifically on microRNAs (miRNAs). Another goal of characterizing circulating molecular information, is to correlate expression to injuries associated with specific tissues of origin. Biomarker candidates are often described as being specific, enriched in a particular tissue or associated with a disease process. Likewise, miRNA data is often reported to be specific, enriched for a tissue, without rigorous testing to support the claim. Here we provide a tissue atlas of small RNAs from 30 different tissues and three different blood cell types. We analyzed the tissues for enrichment of small RNA sequences and assessed their expression in biofluids: plasma, cerebrospinal fluid, urine, and saliva. We employed published data sets representing physiological (resting vs. acute exercise) and pathologic states (early- vs. late-stage liver fibrosis, and differential subtypes of stroke) to determine differential tissue-enriched small RNAs. We also developed an online tool that provides information about exRNA sequences found in different biofluids and tissues. The data can be used to better understand the various types of small RNA sequences in different tissues as well as their potential release into biofluids, which should help in the validation or design of biomarker studies.
RESUMO
We investigated whether extracellular vesicles (EVs) produced under hyperglycemic conditions could communicate signaling to drive atherosclerosis. We did so by treating Apoe-/- mice with exosomes produced by bone marrow-derived macrophages (BMDM) exposed to high glucose (BMDM-HG-exo) or control. Infusions of BMDM-HG-exo increased hematopoiesis, circulating myeloid cell numbers, and atherosclerotic lesions with an accumulation of macrophage foam and apoptotic cells. Transcriptome-wide analysis of cultured macrophages treated with BMDM-HG-exo or plasma EVs isolated from subjects with type II diabetes revealed a reduced inflammatory state and increased metabolic activity. Furthermore, BMDM-HG-exo induced cell proliferation and reprogrammed energy metabolism by increasing glycolytic activity. Lastly, profiling microRNA in BMDM-HG-exo and plasma EVs from diabetic subjects with advanced atherosclerosis converged on miR-486-5p as commonly enriched and recognized in dysregulated hematopoiesis and Abca1 control. Together, our findings show that EVs serve to communicate detrimental properties of hyperglycemia to accelerate atherosclerosis in diabetes.
RESUMO
Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Glipicanas/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Proteinopatias TDP-43/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Drosophila , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Proteinopatias TDP-43/patologiaRESUMO
Changes in the blood-based RNA transcriptome have the potential to inform biomarkers of Parkinson's disease (PD) progression. Here we sequenced a discovery set of whole-blood RNA species in 4,871 longitudinally collected samples from 1,570 clinically phenotyped individuals from the Parkinson's Progression Marker Initiative (PPMI) cohort. Samples were sequenced to an average of 100 million read pairs to create a high-quality transcriptome. Participants with PD in the PPMI had significantly altered RNA expression (>2,000 differentially expressed genes), including an early and persistent increase in neutrophil gene expression, with a concomitant decrease in lymphocyte cell counts. This was validated in a cohort from the Parkinson's Disease Biomarkers Program (PDBP) consisting of 1,599 participants and by alterations in immune cell subtypes. This publicly available transcriptomic dataset, coupled with available detailed clinical data, provides new insights into PD biological processes impacting whole blood and new paths for developing diagnostic and prognostic PD biomarkers.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Progressão da Doença , Biomarcadores , Transcriptoma/genética , Análise de Sequência de RNA , RNARESUMO
Noncoding RNAs have diagnostic and prognostic importance in Parkinson's disease (PD). We studied circulating small noncoding RNAs (sncRNAs) in two large-scale longitudinal PD cohorts (Parkinson's Progression Markers Initiative (PPMI) and Luxembourg Parkinson's Study (NCER-PD)) and modeled their impact on the transcriptome. Sequencing of sncRNAs in 5,450 blood samples of 1,614 individuals in PPMI yielded 323 billion reads, most of which mapped to microRNAs but covered also other RNA classes such as piwi-interacting RNAs, ribosomal RNAs and small nucleolar RNAs. Dysregulated microRNAs associated with disease and disease progression occur in two distinct waves in the third and seventh decade of life. Originating predominantly from immune cells, they resemble a systemic inflammation response and mitochondrial dysfunction, two hallmarks of PD. Profiling 1,553 samples from 1,024 individuals in the NCER-PD cohort validated biomarkers and main findings by an independent technology. Finally, network analysis of sncRNA and transcriptome sequencing from PPMI identified regulatory modules emerging in patients with progressing PD.
Assuntos
MicroRNAs , Doença de Parkinson , Pequeno RNA não Traduzido , Humanos , Pequeno RNA não Traduzido/genética , Transcriptoma/genética , Doença de Parkinson/diagnóstico , MicroRNAs/genética , Sequenciamento de Nucleotídeos em Larga Escala , Progressão da DoençaRESUMO
RATIONALE: Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure. OBJECTIVE: To investigate the mechanism of miR-30d-mediated cardioprotection in HF. METHODS AND RESULTS: In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid-based knock-down of miR-30d expression potentiates pathological left ventricular remodeling, with increased dysfunction, fibrosis, and cardiomyocyte death. RNA sequencing of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in cardiomyocytes, induced by hypoxic stress and is acutely protective, targeting MAP4K4 (mitogen-associate protein kinase 4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by cardiomyocytes and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma extracellular vesicles is associated with adverse remodeling in rodent models and human subjects and is linked to whole-blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems. CONCLUSIONS: These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of extracellular vesicle-contained miRNAs (microRNAs) to transregulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.