Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(5): 924-935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499871

RESUMO

Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human-wildlife interactions along gradients of human influence.


Assuntos
COVID-19 , Atividades Humanas , Mamíferos , Animais , Humanos , COVID-19/epidemiologia , Animais Selvagens , Ecossistema
2.
Ecology ; 103(6): e3677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262926

RESUMO

Homeothermy requires increased metabolic rates as temperatures decline below the thermoneutral zone, so homeotherms typically select microhabitats within or near their thermoneutral zones during periods of inactivity. However, many mammals and birds are heterotherms that relax internal controls on body temperature and go into torpor when maintaining a high, stable body temperature, which is energetically costly. Such heterotherms should be less tied to microhabitats near their thermoneutral zones and, because heterotherms spend more time in torpor and expend less energy at colder temperatures, heterotherms may even select microhabitats in which temperatures are well below their thermoneutral zones. We studied how temperature and daily torpor influence the selection of microhabitats (i.e., diurnal roosts) by a heterothermic bat (Myotis thysanodes). We (1) quantified the relationship between ambient temperature and daily duration of torpor, (2) simulated daily energy expenditure over a range of microhabitat temperatures, and (3) quantified the influence of microhabitat temperature on microhabitat selection. In addition, warm microhabitats substantially reduced the energy expenditure of simulated homeothermic bats, and heterothermic bats modulated their use of daily torpor to maintain a constant level of energy expenditure across microhabitats of different temperatures. Daily torpor expanded the range of energetically economical microhabitats, such that microhabitat selection was independent of microhabitat temperature. Our work adds to a growing literature documenting the functions of torpor beyond its historical conceptualization as a last-resort measure to save energy during periods of extended or acute energetic stress.


Assuntos
Quirópteros , Torpor , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Metabolismo Energético , Mamíferos
3.
Ecology ; 103(4): e3649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35084743

RESUMO

Diverse communities of large mammalian herbivores (LMH), once widespread, are now rare. LMH exert strong direct and indirect effects on community structure and ecosystem functions, and measuring these effects is important for testing ecological theory and for understanding past, current, and future environmental change. This in turn requires long-term experimental manipulations, owing to the slow and often nonlinear responses of populations and assemblages to LMH removal. Moreover, the effects of particular species or body-size classes within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of these effects often depends on environmental context. Since 2008, we have maintained the Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semiarid Kenyan savanna. The goals of the UHURU experiment are to measure the effects of removing successively smaller size classes of LMH (mimicking the process of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU experiment comprises three LMH-exclusion treatments and an unfenced control, applied to nine randomized blocks of contiguous 1-ha plots (n = 36). The fenced treatments are MEGA (exclusion of megaherbivores, elephant and giraffe), MESO (exclusion of herbivores ≥40 kg), and TOTAL (exclusion of herbivores ≥5 kg). Each block is replicated three times at three sites across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The first 5 years of data were published previously (Ecological Archives E095-064) and have been used in numerous studies. Since that publication, we have (1) continued to collect data following the original protocols, (2) improved the taxonomic resolution and accuracy of plant and small-mammal identifications, and (3) begun collecting several new data sets. Here, we present updated and extended raw data from the first 12 years of the UHURU experiment (2008-2019). Data include daily rainfall data throughout the experiment; annual surveys of understory plant communities; annual censuses of woody-plant communities; annual measurements of individually tagged woody plants; monthly monitoring of flowering and fruiting phenology; every-other-month small-mammal mark-recapture data; and quarterly large-mammal dung surveys. There are no copyright restrictions; notification of when and how data are used is appreciated and users of UHURU data should cite this data paper when using the data.


Assuntos
Ecossistema , Herbivoria , Animais , Pradaria , Herbivoria/fisiologia , Quênia , Mamíferos
4.
J Anim Ecol ; 90(11): 2510-2522, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34192343

RESUMO

The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world-wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood. We used long-term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2-1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness. Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness. Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species). Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data-limited species.


Assuntos
Elefantes , Girafas , Animais , Ecossistema , Herbivoria , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA