Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1435-1450, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36738368

RESUMO

The metabolic activation of small-molecule drugs into electrophilic reactive metabolites is widely recognized as an indicator of idiosyncratic adverse drug reactions (IADRs). Three novel anti-breast cancer drugs containing piperazine rings, ribociclib (Kisqali®, RCB), abemaciclib (Verzenio®, ABC), and olaparib (Lynparza®, OLP), were selected to study the effect of different chemical environment on the piperazine ring activation using in silico and in vitro metabolic experiments. ABC and RCB were previously studied and we noticed the piperazine ring in ABC could be strongly bioactivated generating more reactive intermediates than piperazine ring in RCB. OLP was further used as a case study to show the power of in silico software to predict the piperazine ring activation that was approved using in vitro experiments. Initially, predictions of susceptible sites in the metabolism and reactivity pathways were performed using the StarDrop P450 model and XenoSite reactivity tool, respectively. Later, in vitro OLP metabolites were characterized based on rat liver microsomes (RLMs) using KCN (trapping agent) using LC-MS/MS. The main goal of the current study was to answer the question of whether the presence of a piperazine ring in the chemical structure should be always considered a structural alert. Piperazine ring in RBC and ABC was bioactivated through a metabolic sequence that involves the hydroxylation of α-carbon to the tertiary nitrogen atoms of the piperazine ring. In the case of OLP, no cyano adduct was formed due to the presence of two carbonyl groups attached to the two nitrogen atoms of the piperazine ring (neutral amide groups). From the results, piperazine ring in certain cases should not be considered as a structural alert as in the case of OLP due to the presence of two electron withdrawing group that stops the proposed toxicity. Also blocking the bioactive center (α-carbon) using steric hindrances such as methyl group, also the isosteric replacement of α-carbon hydrogen with fluoro atom can aid in reducing the toxic side effects of ABC and RCB. These experiments were done in vitro through incubation with RLMs in the presence of KCN. Also, the results are supported by data generated from in silico software. In the future, drug discovery studies using this concept could be undertaken, allowing for the development of new drugs with reasonable safety profiles. Overall, in vitro RLMs incubations and in silico experiments were able to predict successfully that the piperazine ring should not always be considered a structural alert.


Assuntos
Antineoplásicos , Neoplasias , Ratos , Animais , Cromatografia Líquida , Piperazina , Espectrometria de Massas em Tandem , Piperazinas/toxicidade , Antineoplásicos/toxicidade
2.
RSC Adv ; 10(38): 22668-22683, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35514564

RESUMO

Ribociclib (RBC, Kisqali®) is a highly selective CDK4/6 inhibitor that has been approved for breast cancer therapy. Initially, prediction of susceptible sites of metabolism and reactivity pathways were performed by the StarDrop WhichP450™ module and the Xenosite web predictor tool, respectively. Later, in vitro metabolites and adducts of RBC were characterized from rat liver microsomes using LC-MS/MS. Subsequently, in silico data was used as a guide for the in vitro work. Finally, in silico toxicity assessment of RBC metabolites was carried out using DEREK software and structural modification was proposed to reduce their side effects and to validate the bioactivation pathway theory using the StarDrop DEREK module. In vitro phase I metabolic profiling of RBC was performed utilizing rat liver microsomes (RLMs). Generation of reactive metabolites was investigated using potassium cyanide (KCN) as a trapping nucleophile for the transient and reactive iminium intermediates to form a stable cyano adduct that can be identified and characterized using mass spectrometry. Nine phase I metabolites and one cyano adduct of RBC were characterized. The proposed metabolic pathways involved in generation of these metabolites are hydroxylation, oxidation and reduction. The reactive intermediate generation mechanism of RBC may provide an explanation of its adverse reactions. Aryl piperazine is considered a structural alert for toxicity as proposed by the DEREK report. We propose that the generation of only one reactive metabolite of RBC in a very small concentration is due to the decreased reactivity of the piperazine ring compared to previous reports of similar drugs. Docking analysis was performed for RBC and its proposed derivatives at the active site of the human CDK6 enzyme. Methyl-RBC exhibited the best ADMET and docking analysis and fewer side effects compared to RBC and fluoro-RBC. Further drug discovery studies can be conducted taking into account this concept allowing the development of new drugs with enhanced safety profiles that were confirmed by using StarDrop software. To the best of our knowledge, this is the first literature report of RBCin vitro metabolic profiling and structural characterization and toxicological properties of the generated metabolites.

4.
R Soc Open Sci ; 6(1): 181714, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800400

RESUMO

Abemaciclib (Verzenio®) is approved as a tyrosine kinase inhibitor (TKI) for breast cancer treatment. In this study, in vitro phase I metabolic profiling of Abemaciclib (ABC) was done using rat liver microsomes (RLMs). We checked the formation of reactive intermediates in ABC metabolism using RLMs in the presence of potassium cyanide (KCN) that was used as a capturing agent for iminium reactive intermediates forming a stable complex that can be characterized by LC-MS/MS. Nine in vitro phase I metabolites and three cyano adducts were identified. The metabolic reactions involved in the formation of these metabolites and adducts are reduction, oxidation, hydroxylation and cyanide addition. The bioactivation pathway was also proposed. Knowing the electrodeficient bioactive centre in ABC structure helped in making targeted modifications to improve its safety and retain its efficacy. Blocking or isosteric replacement of α-carbon to the tertiary nitrogen atoms of piperazine ring can aid in reducing toxic side effects of ABC. No previous articles were found about in vitro metabolic profiling for ABC or structural identification of the formed reactive metabolites for ABC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA