Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33967, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071718

RESUMO

Magnesium, valued for its lightweight, recyclability, and biocompatibility, faces challenges like its poor wear behavior and mechanical properties that limit its adaptation for a multitude of applications. In this study, various statistical analyses, and machine learning (ML) techniques were employed to optimize equal channel angular pressing (ECAP) process parameters for improving the wear behavior of Mg-3wt.% Zn-0.7 wt% Ca alloy. ECAP was conducted up to four passes via route Bc at 250 °C. Wear testing of both as-annealed (AA) and ECAP-processed alloys was performed using the dry ball-on-flat wear method under varying loads, speeds, and time. One pass (1P) and 4Bc-ECAP resulted in a notable uniform grain refinement of 86 % and 91 %, respectively, compared to the AA. X-ray diffraction (XRD) analysis confirmed a refined structure attributed to extensive dynamic recrystallization. Mechanical wear testing revealed a significant reduction in volume loss (VL), up to 56 % and 28.5 % after 1P and 4Bc samples, respectively, compared to the AA sample, supported by the observed texture intensity. The coefficient of friction (COF) stabilizes at 0.30-0.45, indicating low friction characteristics. Next, by adjusting wear load and speed through design of experiments (DOE), the wear output responses, VL and COF, were experimentally investigated. The output responses were predicted in the second step using ML, 3D response surface plots, and statistical analysis of variance (ANOVA). According to the regression model, the minimal VL was attained at a 5 N applied load. Also, the wear speed and VL at different passes are inversely proportional. On the other hand, the optimal COF was obtained at applied load about 2-3 N and 250 mm/s at different passes. The wear process variables were then optimized using different optimization techniques namely, genetic algorithm (GA), hybrid DOE-GA, and multi-objective genetic algorithm (MOGA) approaches.

2.
Sci Rep ; 14(1): 9233, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649457

RESUMO

The present research applies different statistical analysis and machine learning (ML) approaches to predict and optimize the processing parameters on the wear behavior of ZK30 alloy processed through equal channel angular pressing (ECAP) technique. Firstly, The ECAPed ZK30 billets have been examined at as-annealed (AA), 1-pass, and 4-passes of route Bc (4Bc). Then, the wear output responses in terms of volume loss (VL) and coefficient of friction (COF) have been experimentally investigated by varying load pressure (P) and speed (V) using design of experiments (DOE). In the second step, statistical analysis of variance (ANOVA), 3D response surface plots, and ML have been employed to predict the output responses. Subsequently, genetic algorithm (GA), hybrid DOE-GA, and multi-objective genetic algorithm techniques have been used to optimize the input variables. The experimental results of ECAP process reveal a significant reduction in the average grain size by 92.7% as it processed through 4Bc compared to AA counterpart. Furthermore, 4Bc exhibited a significant improvement in the VL by 99.8% compared to AA counterpart. Both regression and ML prediction models establish a significant correlation between the projected and the actual data, indicating that the experimental and predicted values agreed exceptionally well. The minimal VL at different ECAP passes was obtained at the highest condition of the wear test. Also, the minimal COF for all ECAP passes was obtained at maximum wear load. However, the optimal speed in the wear process decreased with the number of billets passes for minimum COF. The validation of predicted ML models and VL regression under different wear conditions have an accuracy range of 70-99.7%, respectively.

3.
Materials (Basel) ; 15(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36556839

RESUMO

Copper and its related alloys are frequently adopted in contemporary industry due to their outstanding properties, which include mechanical, electrical, and electronic applications. Equal channel angular pressing (ECAP) is a novel method for producing ultrafine-grained or nanomaterials. Modeling material design processes provides exceptionally efficient techniques for minimizing the efforts and time spent on experimental work to manufacture Cu or its associated alloys through the ECAP process. Although there have been various physical-based models, they are frequently coupled with several restrictions and still require significant time and effort to calibrate and enhance their accuracies. Machine learning (ML) techniques that rely primarily on data-driven models are a viable alternative modeling approach that has recently achieved breakthrough achievements. Several ML algorithms were used in the modeling training and testing phases of this work to imitate the influence of ECAP processing parameters on the mechanical and electrical characteristics of pure Cu, including the number of passes (N), ECAP die angle (φ), processing temperature, and route type. Several experiments were conducted on pure commercial Cu while altering the ECAP processing parameters settings. Linear regression, regression trees, ensembles of regression trees, the Gaussian process, support vector regression, and artificial neural networks are the ML algorithms used in this study. Model predictive performance was assessed using metrics such as root-mean-squared errors and R2 scores. The methodologies presented here demonstrated that they could be effectively used to reduce experimental effort and time by reducing the number of experiments runs required to optimize the material attributes aimed at modeling the ECAP conditions for the following performance characteristics: impact toughness (IT), electrical conductivity (EC), hardness, and tensile characteristics of yield strength (σy), ultimate tensile strength (σu), and ductility (Du).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA