RESUMO
PURPOSE: The aim of the present study, conducted by a working group of the Italian Association of Medical Physics (AIFM), was to define typical z-resolution values for different digital breast tomosynthesis (DBT) models to be used as a reference for quality control (QC). Currently, there are no typical values published in internationally agreed QC protocols. METHODS: To characterize the z-resolution of the DBT models, the full width at half maximum (FWHM) of the artifact spread function (ASF), a technical parameter that quantifies the signal intensity of a detail along reconstructed planes, was analyzed. Five different commercial phantoms, CIRS Model 011, CIRS Model 015, Modular DBT phantom, Pixmam 3-D, and Tomophan, were evaluated on reconstructed DBT images and 82 DBT systems (6 vendors, 9 models) in use at 39 centers in Italy were involved. RESULTS: The ASF was found to be dependent on the detail size, the DBT angular acquisition range, the reconstruction algorithm and applied image processing. In particular, a progressively greater signal spread was observed as the detail size increased and the acquisition angle decreased. However, a clear correlation between signal spread and angular range width was not observed due to the different signal reconstruction and image processing strategies implemented in the algorithms developed by the vendors studied. CONCLUSIONS: The analysis led to the identification of typical z-resolution values for different DBT model-phantom configurations that could be used as a reference during a QC program.
Assuntos
Processamento de Imagem Assistida por Computador , Mamografia , Mamografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Artefatos , AlgoritmosRESUMO
PURPOSE: The aim of this work was to evaluate the dosimetric impact of high-resolution thorax CT during COVID-19 outbreak in the University Hospital of Parma. In two months we have performed a huge number of thorax CT scans collecting effective and equivalent organ doses and evaluating also the lifetime attributable risk (LAR) of lung and other major cancers. MATERIALS AND METHOD: From February 24th to April 28th, 3224 high-resolution thorax CT were acquired. For all patients we have examined the volumetric computed tomography dose index (CTDIvol), the dose length product (DLP), the size-specific dose estimate (SSDE) and effective dose (E103) using a dose tracking software (Radimetrics Bayer HealthCare). From the equivalent dose to organs for each patient, LAR for lung and major cancers were estimated following the method proposed in BEIR VII which considers age and sex differences. RESULTS: Study population included 3224 patients, 1843 male and 1381 female, with an average age of 67 years. The average CTDIvol, SSDE and DLP, and E103 were 6.8 mGy, 8.7 mGy, 239 mGy·cm and 4.4 mSv respectively. The average LAR of all solid cancers was 2.1 cases per 10,000 patients, while the average LAR of leukemia was 0.2 cases per 10,000 patients. For both male and female the organ with a major cancer risk was lung. CONCLUSIONS: Despite the impressive increment in thoracic CT examinations due to COVID-19 outbreak, the high resolution low dose protocol used in our hospital guaranteed low doses and very low risk estimation in terms of LAR.
Assuntos
COVID-19/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Radiometria/métodos , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Surtos de Doenças , Feminino , Humanos , Pulmão/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Doses de Radiação , Medição de Risco , Fatores Sexuais , SoftwareRESUMO
OBJECTIVES: To compare dynamic contrast-enhanced MRI (DCE-MRI) data obtained using different prebolus T1 values in glioma grading and molecular profiling. METHODS: We retrospectively reviewed 83 cases of gliomas: 46 lower-grade gliomas (LGG; grades II and III) and 37 high-grade gliomas (HGG; grade IV). DCE-MRI maps of plasma volume fraction (Vp), extravascular-extracellular volume fraction (Ve), and tracer transfer constant from plasma to tissue (Ktrans) were obtained using a fixed T1 value of 1400 ms and a measured T1 obtained with variable flip angle (VFA). Tumour segmentations were performed and first-order histogram parameters were extracted from volumes of interest (VOIs) after co-registration with the perfusion maps. The two methods were compared using Wilcoxon matched-pairs signed-rank test and Bland-Altman analysis. Diagnostic accuracy was obtained and compared using ROC curve analysis and DeLong's test. RESULTS: Perfusion parameters obtained with the fixed T1 value were significantly higher than those obtained with the VFA. As regards diagnostic accuracy, there were no significant differences between the two methods both for glioma grading and molecular classification, except for few parameters of both methods. CONCLUSIONS: DCE-MRI data obtained with different prebolus T1 are not comparable and the definition of a prebolus T1 by T1 mapping is not mandatory since it does not improve the diagnostic accuracy of DCE-MRI. KEY POINTS: ⢠DCE-MRI data obtained with different prebolus T1 are significantly different, thus not comparable. ⢠The definition of a prebolus T1 by T1 mapping is not mandatory since it does not improve the diagnostic accuracy of DCE-MRI for glioma grading. ⢠The use of a fixed T1 value represents a valid alternative to T1 mapping for DCE-MRI analysis.
Assuntos
Neoplasias Encefálicas/diagnóstico , Encéfalo/patologia , Meios de Contraste/farmacologia , Glioma/diagnóstico , Imageamento por Ressonância Magnética/métodos , Gradação de Tumores , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Adulto JovemRESUMO
MR spectroscopy represents one of the most suitable in vivo tool to assess neurochemical dysfunction in several brain disorders, including attention deficit/hyperactivity disorder. This is the most common neuropsychiatric disorder in childhood and adolescence, which persists into adulthood (in approximately 30%-50% of cases). In past years, many studies have applied different MR spectroscopy techniques to investigate the pathogenesis and effect of conventional treatments. In this article, we review the most recent clinical and preclinical MR spectroscopy results on subjects with attention deficit/hyperactivity disorder and animal models, from childhood to adulthood. We found that the most investigated brain regions were the (pre)frontal lobes and striatum, both involved in the frontostriatal circuits and networks that are known to be impaired in this pathology. Neurometabolite alterations were detected in several regions: the NAA, choline, and glutamatergic compounds. The creatine pool was also altered when an absolute quantitative protocol was adopted. In particular, glutamate was increased in children with attention deficit/hyperactivity disorder, and this can apparently be reversed by methylphenidate treatment. The main difficulties in reviewing MR spectroscopy studies were in the nonhomogeneity of the analyzed subjects, the variety of the investigated brain regions, and also the use of different MR spectroscopy techniques. As for possible improvements in future studies, we recommend the use of standardized protocols and the analysis of other brain regions of particular interest for attention deficit hyperactivity disorder, like the hippocampus, limbic structures, thalamus, and cerebellum.