Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38298420

RESUMO

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

3.
Nat Immunol ; 24(12): 2121-2134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945821

RESUMO

The T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs. Also, 6F-CD3ζ TCRs were refractory to antagonism, as predicted by a new in silico adaptive kinetic proofreading model that revises the role of ITAM multiplicity in TCR signaling. Finally, T cells expressing 6F-CD3ζ displayed enhanced cytolytic activity against solid tumors expressing low-affinity ligands, identifying a new counterintuitive approach to TCR-mediated cancer immunotherapy.


Assuntos
Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Receptores de Antígenos de Linfócitos T , Animais , Camundongos , Complexo CD3 , Ligantes , Peptídeos , Linfócitos T
4.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796477

RESUMO

Checkpoint blockade revolutionized cancer therapy, but we still lack a quantitative, mechanistic understanding of how inhibitory receptors affect diverse signaling pathways. To address this issue, we developed and applied a fluorescent intracellular live multiplex signal transduction activity reporter (FILMSTAR) system to analyze PD-1-induced suppressive effects. These studies identified pathways triggered solely by TCR or requiring both TCR and CD28 inputs. Using presenting cells differing in PD-L1 and CD80 expression while displaying TCR ligands of distinct potency, we found that PD-1-mediated inhibition primarily targets TCR-linked signals in a manner highly sensitive to peptide ligand quality. These findings help resolve discrepancies in existing data about the site(s) of PD-1 inhibition in T cells while emphasizing the importance of neoantigen potency in controlling the effects of checkpoint therapy.


Assuntos
Receptor de Morte Celular Programada 1 , Transdução de Sinais , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Antígeno B7-H1/metabolismo
5.
Nat Immunol ; 24(9): 1434-1442, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500886

RESUMO

Cytotoxic T lymphocytes (CTLs) fight intracellular pathogens and cancer by identifying and destroying infected or transformed target cells1. To kill, CTLs form a specialized cytotoxic immune synapse (IS) with a target of interest and then release toxic perforin and granzymes into the interface to elicit programmed cell death2-5. The IS then dissolves, enabling CTLs to search for additional prey and professional phagocytes to clear the corpse6. While the mechanisms governing IS assembly have been studied extensively, far less is known about target cell release. Here, we applied time-lapse imaging to explore the basis for IS dissolution and found that it occurred concomitantly with the cytoskeletal contraction of apoptotic targets. Genetic and pharmacological perturbation of this contraction response indicated that it was both necessary and sufficient for CTL dissociation. We also found that mechanical amplification of apoptotic contractility promoted faster CTL detachment and serial killing. Collectively, these results establish a biophysical basis for IS dissolution and highlight the importance of mechanosensory feedback in the regulation of cell-cell interactions.


Assuntos
Apoptose , Linfócitos T Citotóxicos , Apoptose/genética , Perforina , Granzimas
6.
Blood Adv ; 7(15): 4218-4232, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36607839

RESUMO

CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape and outcomes for patients with pre-B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately, primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR occur in 20% of the patients and is associated with adverse outcomes. Although some failures may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are distinct compared with primary sensitive (PS) leukemias and that these differences are present before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children's Hospital. Long-read PacBio sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic stem cells. Similarly, assays of transposase-accessible chromatin-sequencing revealed reduced accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and cytometry by time of flight analyses identified leukemic subpopulations expressing multilineage markers and decreased antigen presentation in PNR. We thus describe the association of a stem cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these biomarkers, with the addition of multispecific CAR T cells targeting against leukemic stem cell or myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell epigenome may improve outcomes of patients with B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos T , Criança , Humanos , Epigenoma , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Antígenos CD19 , Células-Tronco Hematopoéticas
8.
PLoS Comput Biol ; 18(10): e1010349, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191000

RESUMO

Data clustering plays a significant role in biomedical sciences, particularly in single-cell data analysis. Researchers use clustering algorithms to group individual cells into populations that can be evaluated across different levels of disease progression, drug response, and other clinical statuses. In many cases, multiple sets of clusters must be generated to assess varying levels of cluster specificity. For example, there are many subtypes of leukocytes (e.g. T cells), whose individual preponderance and phenotype must be assessed for statistical/functional significance. In this report, we introduce a novel hierarchical density clustering algorithm (HAL-x) that uses supervised linkage methods to build a cluster hierarchy on raw single-cell data. With this new approach, HAL-x can quickly predict multiple sets of labels for immense datasets, achieving a considerable improvement in computational efficiency on large datasets compared to existing methods. We also show that cell clusters generated by HAL-x yield near-perfect F1-scores when classifying different clinical statuses based on single-cell profiles. Our hierarchical density clustering algorithm achieves high accuracy in single cell classification in a scalable, tunable and rapid manner.


Assuntos
Algoritmos , Análise de Célula Única , Análise por Conglomerados
9.
Blood ; 140(5): 451-463, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35605184

RESUMO

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.BBζ) for children and young adults (CAYA) with B-cell malignancies. Primary objectives included toxicity and dose finding. Secondary objectives included response rates and relapse-free survival (RFS). Biologic correlatives included laboratory investigations, CAR T-cell expansion and cytokine profiling. Twenty patients, ages 5.4 to 34.6 years, with B-ALL received CD19.22.BBζ. The complete response (CR) rate was 60% (12 of 20) in the full cohort and 71.4% (10 of 14) in CAR-naïve patients. Ten (50%) developed cytokine release syndrome (CRS), with 3 (15%) having ≥ grade 3 CRS and only 1 experiencing neurotoxicity (grade 3). The 6- and 12-month RFS in those achieving CR was 80.8% (95% confidence interval [CI]: 42.4%-94.9%) and 57.7% (95% CI: 22.1%-81.9%), respectively. Limited CAR T-cell expansion and persistence of MSCV-CD19.22.BBζ compared with EF1α-CD22.BBζ prompted laboratory investigations comparing EF1α vs MSCV promoters, which did not reveal major differences. Limited CD22 targeting with CD19.22.BBζ, as evaluated by ex vivo cytokine secretion and leukemia eradication in humanized mice, led to development of a novel bicistronic CD19.28ζ/CD22.BBζ construct with enhanced cytokine production against CD22. With demonstrated safety and efficacy of CD19.22.BBζ in a heavily pretreated CAYA B-ALL cohort, further optimization of combinatorial antigen targeting serves to overcome identified limitations (www.clinicaltrials.gov #NCT03448393).


Assuntos
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Síndrome da Liberação de Citocina , Citocinas , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Recidiva , Linfócitos T
10.
Science ; 376(6595): 880-884, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587980

RESUMO

Systems immunology lacks a framework with which to derive theoretical understanding from high-dimensional datasets. We combined a robotic platform with machine learning to experimentally measure and theoretically model CD8+ T cell activation. High-dimensional cytokine dynamics could be compressed onto a low-dimensional latent space in an antigen-specific manner (so-called "antigen encoding"). We used antigen encoding to model and reconstruct patterns of T cell immune activation. The model delineated six classes of antigens eliciting distinct T cell responses. We generalized antigen encoding to multiple immune settings, including drug perturbations and activation of chimeric antigen receptor T cells. Such universal antigen encoding for T cell activation may enable further modeling of immune responses and their rational manipulation to optimize immunotherapies.


Assuntos
Antígenos , Linfócitos T CD8-Positivos , Citocinas , Ativação Linfocitária , Modelos Imunológicos , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoterapia , Aprendizado de Máquina , Receptores de Antígenos de Linfócitos T/metabolismo
11.
Nat Commun ; 13(1): 2240, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474218

RESUMO

Cognate antigen signal controls CD8+ T cell priming, expansion size and effector versus memory cell fates, but it is not known if and how it modulates the functional features of memory CD8+ T cells. Here we show that the strength of T cell receptor (TCR) signaling controls the requirement for interleukin-2 (IL-2) signals to form a pool of memory CD8+ T cells that competitively re-expand upon secondary antigen encounter. Combining strong TCR and intact IL-2 signaling during priming synergistically induces genome-wide chromatin accessibility in regions targeting a wide breadth of biological processes, consistent with greater T cell functional fitness. Chromatin accessibility in promoters of genes encoding for stem cell, cell cycle and calcium-related proteins correlates with faster intracellular calcium accumulation, initiation of cell cycle and more robust expansion. High-dimensional flow-cytometry analysis of these T cells also highlights higher diversity of T cell subsets and phenotypes with T cells primed with stronger TCR and IL-2 stimulation than those primed with weaker strengths of TCR and/or IL-2 signals. These results formally show that epitope selection in vaccine design impacts memory CD8+ T cell epigenetic programming and function.


Assuntos
Fenômenos Biológicos , Interleucina-2 , Antígenos/metabolismo , Linfócitos T CD8-Positivos , Cálcio/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Memória Imunológica , Receptores de Antígenos de Linfócitos T/metabolismo
12.
Sci Signal ; 14(708): eabe5380, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34752140

RESUMO

Interactions between human leukocyte antigen (HLA) molecules on target cells and the inhibitory killer cell immunoglobulin-like receptors (KIRs) and heterodimeric inhibitory receptor CD94-NKG2A on human natural killer (NK) cells shape and program various response capacities. A functionally orthologous system exists in mice, consisting of major histocompatibility complex (MHC) molecules on target cells and the inhibitory Ly49 and CD94-NKG2A receptors on NK cells. Here, we found that the abundance of Src homology 2 domain­containing phosphatase-1 (SHP-1) in NK cells was established by interactions between MHCs and NK cell inhibitory receptors, although phenotypically identical NK cell populations still showed substantial variability in endogenous SHP-1 abundance and NK cell response potential. Human and mouse NK cell populations with high responsiveness had low SHP-1 abundance, and a reduction in SHP-1 abundance in NK cells enhanced their responsiveness. Computational modeling of NK cell activation by membrane-proximal signaling events identified SHP-1 as a negative amplitude regulator, which was validated by single-cell analysis of human NK cell responsiveness. The amount of mRNA and protein varied among responsive NK cells despite their similar chromatin accessibility to that of unresponsive cells, suggesting dynamic regulation of SHP-1 abundance. Low intracellular SHP-1 abundance was a biomarker of responsive NK cells. Together, these data suggest that enhancing NK cell function through the acute loss of SHP-1 abundance or activity may enhance the tumoricidal capacity of NK cells.


Assuntos
Células Matadoras Naturais , Proteína Tirosina Fosfatase não Receptora Tipo 6
13.
Nat Methods ; 18(10): 1181-1191, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594031

RESUMO

Cytokines are critical for intercellular communication in human health and disease, but the investigation of cytokine signaling activity has remained challenging due to the short half-lives of cytokines and the complexity/redundancy of cytokine functions. To address these challenges, we developed the Cytokine Signaling Analyzer (CytoSig; https://cytosig.ccr.cancer.gov/ ), providing both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. We collected 20,591 transcriptome profiles for human cytokine, chemokine and growth factor responses. This atlas of transcriptional patterns induced by cytokines enabled the reliable prediction of signaling activities in distinct cell populations in infectious diseases, chronic inflammation and cancer using bulk and single-cell transcriptomic data. CytoSig revealed previously unidentified roles of many cytokines, such as BMP6 as an anti-inflammatory factor, and identified candidate therapeutic targets in human inflammatory diseases, such as CXCL8 for severe coronavirus disease 2019.


Assuntos
COVID-19/imunologia , Citocinas/metabolismo , Bases de Dados de Proteínas , SARS-CoV-2 , COVID-19/metabolismo , Citocinas/genética , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/fisiologia , Humanos , Transdução de Sinais/fisiologia
14.
Front Immunol ; 12: 748423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691060

RESUMO

The Type I Interferon family of cytokines all act through the same cell surface receptor and induce phosphorylation of the same subset of response regulators of the STAT family. Despite their shared receptor, different Type I Interferons have different functions during immune response to infection. In particular, they differ in the potency of their induced anti-viral and anti-proliferative responses in target cells. It remains not fully understood how these functional differences can arise in a ligand-specific manner both at the level of STAT phosphorylation and the downstream function. We use a minimal computational model of Type I Interferon signaling, focusing on Interferon-α and Interferon-ß. We validate the model with quantitative experimental data to identify the key determinants of specificity and functional plasticity in Type I Interferon signaling. We investigate different mechanisms of signal discrimination, and how multiple system components such as binding affinity, receptor expression levels and their variability, receptor internalization, short-term negative feedback by SOCS1 protein, and differential receptor expression play together to ensure ligand specificity on the level of STAT phosphorylation. Based on these results, we propose phenomenological functional mappings from STAT activation to downstream anti-viral and anti-proliferative activity to investigate differential signal processing steps downstream of STAT phosphorylation. We find that the negative feedback by the protein USP18, which enhances differences in signaling between Interferons via ligand-dependent refractoriness, can give rise to functional plasticity in Interferon-α and Interferon-ß signaling, and explore other factors that control functional plasticity. Beyond Type I Interferon signaling, our results have a broad applicability to questions of signaling specificity and functional plasticity in signaling systems with multiple ligands acting through a bottleneck of a small number of shared receptors.


Assuntos
Interferon-alfa/fisiologia , Interferon beta/fisiologia , Modelos Imunológicos , Receptor Cross-Talk/fisiologia , Receptor de Interferon alfa e beta/fisiologia , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Dimerização , Retroalimentação Fisiológica , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Mapeamento de Interação de Proteínas , Fatores de Transcrição STAT/metabolismo , Baço/citologia , Proteína 1 Supressora da Sinalização de Citocina/fisiologia , Linfócitos T/imunologia , Ubiquitina Tiolesterase
15.
Cell ; 184(15): 3981-3997.e22, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157301

RESUMO

A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.


Assuntos
Retroalimentação Fisiológica , Homeostase/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Interleucina-2/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Comunicação Parácrina , Transdução de Sinais
16.
Science ; 370(6522): 1328-1334, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303615

RESUMO

Adoptive T cell therapy (ACT) using ex vivo-expanded autologous tumor-infiltrating lymphocytes (TILs) can mediate complete regression of certain human cancers. The impact of TIL phenotypes on clinical success of TIL-ACT is currently unclear. Using high-dimensional analysis of human ACT products, we identified a memory-progenitor CD39-negative stem-like phenotype (CD39-CD69-) associated with complete cancer regression and TIL persistence and a terminally differentiated CD39-positive state (CD39+CD69+) associated with poor TIL persistence. Most antitumor neoantigen-reactive TILs were found in the differentiated CD39+ state. However, ACT responders retained a pool of CD39- stem-like neoantigen-specific TILs that was lacking in ACT nonresponders. Tumor-reactive stem-like TILs were capable of self-renewal, expansion, persistence, and superior antitumor response in vivo. These data suggest that TIL subsets mediating ACT response are distinct from TIL subsets enriched for antitumor reactivity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/transplante , Melanoma/terapia , Neoplasias Cutâneas/terapia , Animais , Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Apirase/análise , Linfócitos T CD8-Positivos/química , Feminino , Humanos , Lectinas Tipo C/análise , Melanoma/imunologia , Camundongos , Camundongos Mutantes , Neoplasias Cutâneas/imunologia
17.
Cell ; 183(6): 1520-1535.e14, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157038

RESUMO

ß-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that ß-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of ß-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. ß-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.


Assuntos
COVID-19/metabolismo , SARS-CoV-2/metabolismo , Via Secretória , Liberação de Vírus , Fatores de Ribosilação do ADP/metabolismo , Animais , COVID-19/patologia , Feminino , Células HeLa , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Lisossomos , Camundongos , Tioureia/análogos & derivados , Tioureia/farmacologia , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Tratamento Farmacológico da COVID-19
18.
Am J Cancer Res ; 10(6): 1857-1870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642296

RESUMO

The incidence of thyroid cancer, the most frequent endocrine neoplasia, is rapidly increasing. Significant progress has recently been made in the identification of genetic lesions in thyroid cancer; however, whether inflammation contributes to thyroid cancer progression remains unknown. Using a mouse model of aggressive follicular thyroid cancer (FTC; ThrbPV/PVPten+/- mice), we aimed to elucidate a cause-effect relationship at the molecular level. The ThrbPV/PVPten+/- mouse expresses a dominantly negative thyroid hormone receptor ß (denoted as PV) and a deletion of a single allele of the Pten gene. These two oncogenic signaling pathways synergistically activate PI3K-AKT signaling to drive cancer progression as in human FTC. At the age of 5-7 weeks, thyroids of ThrbPV/PVPten+/- mice exhibited extensive hyperplasia accompanied by 77.5-fold infiltration of inflammatory monocytes as compared with normal thyroids. Global gene expression profiling identified altered expression of 2387 genes, among which 1353 were upregulated and 1034 were down-regulated. Further analysis identified markedly elevated expression of inflammation mediators and cytokines such as, Csf1r, Csf1, SPP1, Aif1, IL6, Ccl9, Ccl3, Ccl12, and Ccr2 genes and decreased expression of Kit, Ephx2, Cd163, IL15, Ccl11, and Cxcl13 genes. These changes elicited the inflammatory responses in the hyperplastic thyroid of ThrbPV/PVPten+/- mice, reflecting early events in thyroid carcinogenesis. We next tested whether attenuating the inflammatory responses could mitigate thyroid cancer progression. We treated the mice with an inhibitor of colony-stimulating factor 1 receptor (CSF1R), pexidartinib (PLX-3397; PLX). CSF1R mediates the activity of the cytokine, colony stimulating factor 1 (CSF1), in the production, differentiation, and functions of monocytes and macrophages. Treatment with PLX decreased 94% and 62% of inflammatory monocytes in the thyroid and bone marrow, respectively, versus controls. Further, PLX suppressed the expression of critical cytokine and inflammation-regulating genes such as Csf1r, SPP1 (OPN), Aif1, IL6, Ccl9, Ccl3, Ccl12, and Ccr2 (25%-80%), resulting in inhibition of 89% tumor cell proliferation, evidenced by Ki-67 immunostaining. These preclinical findings suggest that inflammation occurs in the early stage of thyroid carcinogenesis and plays a critical in cancer progression. Importantly, attenuation of inflammation by inhibitors such as PLX would be beneficial in preventing thyroid cancer.

19.
Redox Biol ; 28: 101354, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683257

RESUMO

The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2-/- mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.


Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/efeitos adversos , Óxido Nítrico Sintase Tipo II/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Transplante de Neoplasias , Óxido Nítrico/metabolismo , Análise de Célula Única , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Phys Rev E ; 100(2-1): 022415, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574667

RESUMO

Near a bifurcation point, the response time of a system is expected to diverge due to the phenomenon of critical slowing down. We investigate critical slowing down in well-mixed stochastic models of biochemical feedback by exploiting a mapping to the mean-field Ising universality class. We analyze the responses to a sudden quench and to continuous driving in the model parameters. In the latter case, we demonstrate that our class of models exhibits the Kibble-Zurek collapse, which predicts the scaling of hysteresis in cellular responses to gradual perturbations. We discuss the implications of our results in terms of the tradeoff between a precise and a fast response. Finally, we use our mapping to quantify critical slowing down in T cells, where the addition of a drug is equivalent to a sudden quench in parameter space.


Assuntos
Retroalimentação Fisiológica , Modelos Biológicos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA