Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39199547

RESUMO

Intraoperative magnetic resonance imaging (iMRI) has witnessed significant growth in the field of neurosurgery, particularly in glioma surgery, enhancing image-guided neuronavigation and optimizing the extent of resection (EOR). Despite its extensive use in the treatment of gliomas, its utility in brain metastases (BMs) remains unexplored. This study examined the effect of iMRI on BM resection. This retrospective study was conducted at the neurosurgical center of the University Hospital of the Technical University of Munich and involved 25 patients with BM who underwent resection using 3-Tesla iMRI between 2018 and 2022. Volumetric measurements of the resected contrast-enhancing metastases were performed using preoperative, intraoperative, and postoperative MRI images. The Karnofsky Performance Score (KPS) and neurological status of the patients were assessed pre- and postoperatively. Local recurrence and in-brain progression were reported in patients who underwent follow-up MRI at 3 and 6 months postoperatively. In this cohort (n = 25, mean age 63.6 years), non-small-cell lung cancer (NSCLC) was the most common origin (28%). The mean surgical duration was 219.9 min, and that of iMRI was 61.7 min. Indications for iMRI were primarily associated with preoperative imaging, suggesting an unclear entity that is often suspicious for glioma. Gross total resection (GTR) was achieved in 21 patients (84%). Continued resection was pursued after iMRI in six cases (24%), resulting in an improved EOR of 100% in five cases and 97.6% in one case. Neurological status postoperatively remained stable in 60%, improved in 24%, and worsened in 16% of patients. No wound healing or postoperative complications were observed. Among the thirteen patients who underwent follow-up MRI 3 months postoperatively, one patient showed local recurrence at the site of resection, and seven patients showed in-brain progression. Of the eight patients who underwent a 6-month follow-up MRI, two showed local recurrence, while three exhibited in-brain progression. The observed favorable profiles of GTR, coupled with the notable absence of wound-healing problems and acute postoperative complications, affirm the safety and feasibility of incorporating iMRI into the neurosurgical workflow for resecting BM with specific indications. The real-time imaging capabilities of iMRI offer unparalleled precision, aiding meticulous tumor delineation and informed decision-making, ultimately contributing to improved patient outcomes. Although our experience suggests the potential benefits of iMRI as a safe tool for enhancing EOR, we acknowledge the need for larger prospective clinical trials. Comprehensive investigations on a broader scale are imperative to further elucidate the specific indications for iMRI in the context of BMs and to study its impact on survival. Rigorous prospective studies will refine our understanding of the clinical scenarios in which iMRI can maximize its impact, guiding neurosurgeons toward more informed and tailored decision-making.

2.
Cureus ; 16(2): e55187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558729

RESUMO

Leptomeningeal carcinomatosis represents a terminal stage and is a devastating complication of cancer. Despite its high incidence, current diagnostic methods fail to accurately detect this condition in a timely manner. This failure to diagnose leads to the refusal of treatment and the absence of clinical trials, hampering the development of new therapy strategies. The use of liquid biopsy is revolutionizing the field of diagnostic oncology. The dynamic and non-invasive detection of tumor markers has enormous potential in cancer diagnostics and treatment. Leptomeningeal carcinomatosis is a condition where invasive tissue biopsy is not part of the routine diagnostic analysis, making liquid biopsy an essential diagnostic tool. Several elements in cerebrospinal fluid (CSF) have been investigated as potential targets of liquid biopsy, including free circulating tumor cells, free circulating nucleic acids, proteins, exosomes, and even non-tumor cells as part of the dynamic tumor microenvironment. This review aims to summarize current breakthroughs in the research on liquid biopsy, including the latest breakthroughs in the identification of tumor cells and nucleic acids, and give an overview of future directions in the diagnosis of leptomeningeal carcinomatosis.

3.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254781

RESUMO

BACKGROUND: Graded Prognostic Assessment (GPA) has been proposed for various brain metastases (BMs) tailored to the primary histology and molecular profiles. However, it does not consider whether patients have been operated on or not and does not include surgical outcomes as prognostic factors. The residual tumor burden (RTB) is a strong predictor of overall survival. We validated the GPA score and introduced "volumetric GPA" in the largest cohort of operated patients and further explored the role of RTB as an additional prognostic factor. METHODS: A total of 630 patients with BMs between 2007 and 2020 were included. The four GPA components were analyzed. The validity of the original score was assessed using Cox regression, and a modified index incorporating RTB was developed by comparing the accuracy, sensitivity, specificity, F1-score, and AUC parameters. RESULTS: GPA categories showed an association with survival: age (p < 0.001, hazard ratio (HR) 2.9, 95% confidence interval (CI) 2.5-3.3), Karnofsky performance status (KPS) (p < 0.001, HR 1.3, 95% CI 1.2-1.5), number of BMs (p = 0.019, HR 1.4, 95% CI 1.1-1.8), and the presence of extracranial manifestation (p < 0.001, HR 3, 95% CI 1.6-2.5). The median survival for GPA 0-1 was 4 months; for GPA 1.5-2, it was 12 months; for GPA 2.5-3, it was 21 months; and for GPA 3.5-4, it was 38 months (p < 0.001). RTB was identified as an independent prognostic factor. A cut-off of 2 cm3 was used for further analysis, which showed a median survival of 6 months (95% CI 4-8) vs. 13 months (95% CI 11-14, p < 0.001) for patients with RTB > 2 cm3 and <2 cm3, respectively. RTB was added as an additional component for a modified volumetric GPA score. The survival rates with the modified GPA score were: GPA 0-1: 4 months, GPA 1.5-2: 7 months, GPA 2.5-3: 18 months, and GPA 3.5-4: 34 months. Both scores showed good stratification, with the new score showed a trend towards better discrimination in patients with more favorable prognoses. CONCLUSION: The prognostic value of the original GPA was confirmed in our cohort of patients who underwent surgery for BM. The RTB was identified as a parameter of high prognostic significance and was incorporated into an updated "volumetric GPA". This score provides a novel tool for prognosis and clinical decision making in patients undergoing surgery. This method may be useful for stratification and patient selection for further treatment and in future clinical trials.

4.
Front Oncol ; 13: 1343500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269027

RESUMO

Background: A reduced Karnofsky performance score (KPS) often leads to the discontinuation of surgical and adjuvant therapy, owing to a lack of evidence of survival and quality of life benefits. This study aimed to examine the clinical and treatment outcomes of patients with KPS < 70 after neurosurgical resection and identify prognostic factors associated with better survival. Methods: Patients with a preoperative KPS < 70 who underwent surgical resection for newly diagnosed brain metastases (BM) between 2007 and 2020 were retrospectively analyzed. The KPS, age, sex, tumor localization, cumulative tumor volume, number of lesions, extent of resection, prognostic assessment scores, adjuvant radiotherapy and systemic therapy, and presence of disease progression were analyzed. Univariate and multivariate logistic regression analyses were performed to determine the factors associated with better survival. Survival > 3 months was considered favorable and ≤ 3 months as poor. Results: A total of 140 patients were identified. Median overall survival was 5.6 months (range 0-58). There was no difference in the preoperative KPS between the groups of > 3 and ≤ 3 months (50; range, 20-60 vs. 50; range, 10-60, p = 0.077). There was a significant improvement in KPS after surgery in patients with a preoperative KPS of 20% (20 vs 40 ± 20, p = 0.048). In the other groups, no significant changes in KPS were observed. Adjuvant radiotherapy was associated with better survival (44 [84.6%] vs. 32 [36.4%]; hazard ratio [HR], 0.0363; confidence interval [CI], 0.197-0.670, p = 0.00199). Adjuvant chemotherapy and immunotherapy resulted in prolonged survival (24 [46.2%] vs. 12 [13.6%]; HR 0.474, CI 0.263-0.854, p = 0.013]. Systemic disease progression was associated with poor survival (36 [50%] vs. 71 [80.7%]; HR 5.975, CI 2.610-13.677, p < 0.001]. Conclusion: Neurosurgical resection is an appropriate treatment modality for patients with low KPS. Surgery may improve functional status and facilitate further tumor-specific treatment. Combined treatment with adjuvant radiotherapy and systemic therapy was associated with improved survival in this cohort of patients. Systemic tumor progression has been identified as an independent factor for a poor prognosis. There is almost no information regarding surgical and adjuvant treatment in patients with low KPS. Our paper provides novel data on clinical outcome and survival analysis of patients with BM who underwent surgical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA