Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
ACS Omega ; 8(41): 38272-38287, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867713

RESUMO

Photocatalysis is realized by the design of a visible-light-active catalyst with robust redox capacity and broad absorption. In this study, a series of novel Z-scheme CoNiWO4/Ph-gC3N4 photocatalysts are synthesized to improve their redox property and photocatalytic activity toward broad visible light absorption. An intimate stable heterojunction is made between cobalt-nickel tungstate (CoNiWO4) and phenyl-doped graphitic carbon nitride (Ph-gC3N4), and its physicochemical properties are studied. The bifunctional properties of all of the synthesized materials were assessed by studying the decomposition of bisphenol A (BPA) and methyl orange (MO) dye as model pollutants, followed by an evaluation of their anticancer activity on human lung cancer cell lines. The photocatalyst with 20 wt % CoNiWO4 heterocomposite showed an enhanced response toward the removal of cancerous cells. The synthesized pristine CoNiWO4 and Ph-gC3N4 exhibit well-matched band structures and, hence, make it easier to create a Z-scheme heterocomposite. This may increase the lifetime of photoinduced charge carriers with a high redox power, thereby improving their photocatalytic and anticancer activity. An extensive analysis of the mechanism demonstrates that hydroxyl radicals (•OH) and superoxide radical anions (•O2-) are responsible for the degradation of organic compounds via Z-scheme charge transfer approach. These findings point toward a new route for creating effective Co-Ni tungstate-based direct Z-scheme photocatalysts for various redox processes, particularly the mineralization of resistant organic molecules.

2.
Sci Rep ; 13(1): 17306, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828100

RESUMO

The recent prediction of diabetes to be a global pandemic invites a detection strategy preferably non-invasive, and bloodless to manage the disease and the associated complications. Here, we have synthesized chitosan polymer functionalized, organic-inorganic bio-compatible nano-hybrids of Mn3O4 nanoparticles, and characterized it by utilizing several optical methodologies for the structural characterization which shows the Michaelis Menten (MM) kinetics for glucose and alpha-amylase protein (well-known diabetes biomarkers). We have also studied the potentiality for the detection of alpha-amylase in human salivary secretion which is reported to be strongly correlated with uncontrolled hyperglycemia. Finally, we have developed a prototype for the measurement of glucose (LOD of 0.38 mg/dL, LOQ of 1.15 mg/dL) and HbA1c (LOD of 0.15% and LOQ of 0.45%) utilizing the basic knowledge in the study for the detection of uncontrolled hyperglycemia at the point-of-care. With the limited number of clinical trials, we have explored the potential of our work in combating the diabetic pandemic across the globe in near future.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Saliva/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Hiperglicemia/diagnóstico , Hiperglicemia/metabolismo , Análise Espectral , alfa-Amilases/metabolismo
3.
RSC Adv ; 13(8): 5013-5026, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36777948

RESUMO

For the last several decades, semiconducting materials and nanocomposites have received a lot of interest in generating highly efficient photocatalysts to destroy organic pollutants and eradicate bacteria. This study uses a simple deposition and precipitation approach at ambient temperature to create a unique and efficient AgI-CdO heterojunction. DRS, IR, SEM, EDS, XRD, EIS, and TEM were utilized to identify the material. SEM and TEM investigation depict the completely spherical, hexagonal forms and zigzag cubes for synthesized AgI-CdO. The EDX spectra reveal the presence of Ag, I, Cd, and O elements without impurity peaks showing that the prepared samples are highly pure. The activity of the synthesized materials was tested by degrading two different chromophoric dyes and a drug derivative (paracetamol) in an aqueous suspension under visible light. In addition, the activity of the most active catalyst was compared with Degussa P25, Fenton's reagent, and under sunlight for degradation of MB and RhB under similar conditions. Photolysis of paracetamol was also looked at using HPLC to identify intermediates formed in the photo-oxidation process. In addition, antibacterial activity was also investigated with the synthesized CdO-AgI nanocomposite in vitro against human pathogenic bacterial strains and compared with that of pure materials like AgI and standard ampicillin. The results showed excellent activity with the composite material, which could be due to the higher surface areas and the interactions between AgI and CdO nanoparticles. Quenching investigations revealed O2˙- and holes are principal reactive species. A viable photocatalytic degradation mechanism for organic pollutant elimination over the AgI-CdO nanocomposite has been sketched out based on the obtained results.

4.
Front Chem ; 9: 666573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109154

RESUMO

A series of novel pyran-linked phthalazinone-pyrazole hybrids were designed and synthesized by a facile one-pot three-component reaction employing substituted phthalazinone, 1H-pyrazole-5-carbaldehyde, and active methylene compounds. Optimization studies led to the identification of L-proline and ethanol as efficient catalyst and solvent, respectively. This was followed by evaluation of anticancer activity against solid tumor cell lines of lung and cervical carcinoma that displayed IC50 values in the range of 9.8-41.6 µM. Molecular modeling studies were performed, and crucial interactions with the target protein were identified. The drug likeliness nature of the compounds and molecular descriptors such as molecular flexibility, complexity, and shape index were also calculated to understand the potential of the synthesized molecules to act as lead-like molecule upon further detailed biological investigations as well as 3D-QSAR studies.

5.
Front Chem ; 9: 630357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777897

RESUMO

A molecular modeling assisted rational design and synthesis of naphthalene diimide linked bis-naphthalimides as potential DNA interactive agents is described. Chemical templates incorporating naphthalene diimide as a linker in bis-naphthalimide motif were subjected to molecular docking analysis at specific intercalation and telomeric DNA G-quadruplex sites. Excellent results were obtained, which were better than the standards. A short and convenient synthetic route was employed to access these hybrids experimentally, followed by evaluation of their ability to cause thermal denaturation of DNA and cytotoxic properties along with ADME predictions. The obtained results provided useful insights and two potential molecules were identified for further development.

6.
RSC Adv ; 11(57): 35806-35827, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492773

RESUMO

Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 118999, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33038860

RESUMO

Nanomaterials-based colorimetric immunoassays showed increasing attention for monitoring different biomarkers because of their unique optical and electrical features. Here, a highly sensitive and selective optical sensor was described for the determination of different aflatoxins (AFs). Mesoporous silica nanoparticles (m-SNPs) with an average particle size of 40 nm were prepared by the sol-gel method and then decorated with gold nanoparticles (AuNPs). The Au NPs@m-SiNPs nanocomposite with an average particle size of 66 nm was modified with AFs antibodies. The assay includes the following steps: the Au NPs@m-SiNPs nanocomposite was immersed with AFs antibodies, and then the AFs-Ab/Au NPs@m-SiNPs was used as a probe for AFs detection. The interaction between the AFs-Ab/Au NPs@m-SiNPs and the AFs has resulted in a change in its color from pink to violet. Measurements are performed by absorptiometry at a wavelength of 425 nm. The immunoassay works in the concentration range from 1 ng·mL-1 to 75 ng·mL-1 AFB1 and has a limit of detection 0.16 ng·mL-1 (at S/N = 3). The assay was applied to the determination of AFs in different food samples spiked with AFS. Finally, the assay was used to detect AFs in a real sample, and the LC-MS technique was used to verify the results.


Assuntos
Aflatoxinas , Nanopartículas Metálicas , Aflatoxinas/análise , Colorimetria , Ouro , Imunoensaio , Dióxido de Silício
8.
Int J Pharm ; 590: 119897, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32971176

RESUMO

Curcumin is highly effective against various types of cancers; however, its low aqueous solubility, high metabolism and non-specificity hinder its efficacy. This study reports the synthesis of three lactobionic acid containing bola-amphiphiles and their investigation for curcumin nano-vesicular delivery into cancer cells. Synthesized bola-amphiphiles were capable of forming nano-vesicles and curcumin loading in a lipophilicity dependent manner. Bola-amphiphile with higher lipophilicity (C12) caused 89.55 ± 5.52% drug encapsulation in its spherical shape nano-vesicles (195.90 ± 0.83 nm). Bola-amphiphile resulting increased curcumin encapsulation with minimum vesicles size was further investigated for cellular uptake and in-vitro anticancer activity. Anticancer activity of curcumin significantly increased against the tested cancer cells upon loading in bola-amphiphile nano-vesicles. Furthermore, nano-vesicular drug delivery of curcumin enhanced its cellular uptake even at the lowest concentration of 1.25 µg/mL.It is concluded that the synthesized bola-amphiphile based nano-vesicles can efficiently deliver curcumin to the tested cancer cells and needs to be tested for established anticancer drugs against different cancer cell lines for effective treatment of cancer.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neoplasias , Técnicas de Cultura de Células , Dissacarídeos , Micelas
9.
RSC Med Chem ; 11(3): 327-348, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479639

RESUMO

The triazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules in the quest for new drugs for clinical usage. Several marketed drugs possess these versatile moieties that are used in a wide range of medical indications. This stems from the unique intrinsic properties of triazoles, which impart stability to the basic pharmacophoric unit with an added advantage of being a bioisostere of different chemical functionalities. In the last decade, the use of triazoles as bioisosteres and linkers in the development of microtubule targeting agents has been extensively investigated. The present review highlights the advances in this promising area of drug discovery and development.

10.
R Soc Open Sci ; 7(12): 200959, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489263

RESUMO

The drug resistance of bacteria is a significant threat to human civilization while the action of antibiotics against drug-resistant bacteria is severely limited owing to the hydrophobic nature of drug molecules, which unquestionably inhibit its permanency for clinical applications. The antibacterial action of nanomaterials offers major modalities to combat drug resistance of bacteria. The current work reports the use of nano-metal-organic frameworks encapsulating drug molecules to enhance its antibacterial activity against model drug-resistant bacteria and biofilm of the bacteria. We have attached rifampicin (RF), a well-documented antituberculosis drug with tremendous pharmacological significance, into the pore surface of zeolitic imidazolate framework 8 (ZIF8) by a simple synthetic procedure. The synthesized ZIF8 has been characterized using the X-ray diffraction (XRD) method before and after drug encapsulation. The electron microscopic strategies such as scanning electron microscope and transmission electron microscope methods were performed to characterize the binding between ZIF8 and RF. We have also performed picosecond-resolved fluorescence spectroscopy to validate the formation of the ZIF8-RF nanohybrids (NHs). The drug release profile experiment demonstrates that ZIF8-RF depicts pH-responsive drug delivery and is ideal for targeting bacterial disease corresponding to its inherent acidic nature. Most remarkably, ZIF8-RF gives enhanced antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria and also prompts entire damage of structurally robust bacterial biofilms. Overall, the present study depicts a detailed physical insight for manufactured antibiotic-encapsulated NHs presenting tremendous antimicrobial activity that can be beneficial for manifold practical applications.

11.
Curr Comput Aided Drug Des ; 16(5): 583-598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31453790

RESUMO

BACKGROUND: Human African trypanosomiasis is a fatal disease prevalent in approximately 36 sub-Saharan countries. Emerging reports of drug resistance in Trypanosoma brucei are a serious cause of concern as only limited drugs are available for the treatment of the disease. Pteridine reductase is an enzyme of Trypanosoma brucei. METHODS: It plays a critical role in the pterin metabolic pathway that is absolutely essential for its survival in the human host. The success of finding a potent inhibitor in structure-based drug design lies within the ability of computational tools to efficiently and accurately dock a ligand into the binding cavity of the target protein. Here we report the computational characterization of Trypanosoma brucei pteridine reductase (Tb-PR) active-site using twenty-four high-resolution co-crystal structures with various drugs. Structurally, the Tb-PR active site can be grouped in two clusters; one with high Root Mean Square Deviation (RMSD) of atomic positions and another with low RMSD of atomic positions. These clusters provide fresh insight for rational drug design against Tb-PR. Henceforth, the effect of several factors on docking accuracy, including ligand and protein flexibility were analyzed using Fred. RESULTS: The online server was used to analyze the side chain flexibility and four proteins were selected on the basis of results. The proteins were subjected to small-scale virtual screening using 85 compounds, and statistics were calculated using Bedroc and roc curves. The enrichment factor was also calculated for the proteins and scoring functions. The best scoring function was used to understand the ligand protein interactions with top common compounds of four proteins. In addition, we made a 3D structural comparison between the active site of Tb-PR and Leishmania major pteridine reductase (Lm- PR). We described key structural differences between Tb-PR and Lm-PR that can be exploited for rational drug design against these two human parasites. CONCLUSION: The results indicated that relying just on re-docking and cross-docking experiments for virtual screening of libraries isn't enough and results might be misleading. Hence it has been suggested that small scale virtual screening should be performed prior to large scale screening.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Oxirredutases/química , Trypanosoma brucei brucei/enzimologia , Domínio Catalítico , Desenho de Fármacos , Humanos , Relação Estrutura-Atividade
12.
Anticancer Agents Med Chem ; 20(5): 599-611, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884931

RESUMO

BACKGROUND: Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multidrug resistance to various conventional drugs, and the continuing importance of health-care expenditure, many researchers have focused on developing novel and effective anticancer compounds. OBJECTIVE: Chemical repositories provide a good platform to evaluate and exploit known chemical entities for the identification of other biological activities. In the present study, we have selected an in-house library of synthesized compounds based on two different pharmacophoric scaffolds to evaluate their cytotoxic potency on various cancer cell lines and mechanisms of action. METHODS: A series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Furthermore, the active compound of the study was investigated to elucidate the mechanism of cytotoxicity by performing series of experiments such as cell cycle analysis, inhibition of tubulin polymerization, alteration of mitochondrial membrane potential, determination of endocytic pathway for drug uptake pathway and combination drug treatment. RESULTS: Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15- 5.0µM) and induced cell cycle arrest in the G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with a combination of drugs showed a synergistic effect at lower concentrations, and the drug uptake was mediated through clathrin-mediated endocytic pathway. CONCLUSION: Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of new anticancer agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzotiadiazinas/farmacologia , Mitose/efeitos dos fármacos , Quinazolinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/química , Benzotiadiazinas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Polimerização/efeitos dos fármacos , Quinazolinas/química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
13.
Eur J Med Chem ; 166: 502-513, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30739829

RESUMO

The peroxisome proliferator-activated receptors (PPAR-α, PPAR-ß/δ, and PPAR-γ) are members of the nuclear receptor super-family, acting as ligand-inducible transcription factors and play crucial roles in glucose and lipid metabolism. These are a well-known receptor for diabetic therapy, not only influence the cardiovascular systems but are also expressed in many human solid tumors. For atherosclerosis, inflammation, and hypertension, the PPARs are considered as important therapeutic targets. Furthermore, it has been suggested that careful designing of partial agonists for PPARs, may show improvement with the side effects and also increase the therapeutic value for different diseases as cancer, inflammation and cardiovascular etc. This review summaries structural features of PPAR receptors, illustrates the method of PPAR modulator design, then analyzes recent dual- and pan-agonist with different therapeutic outcomes of the receptor to be used as a target for drugs in future. The advances in PPARs antagonists, their classification and structure-activity relationship are also summarized.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Doença , Descoberta de Drogas , Humanos , Ligantes , Receptores Ativados por Proliferador de Peroxissomo/química
14.
PLoS One ; 14(1): e0210652, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650140

RESUMO

Aflatoxins (AFs) are a family of fungal toxins that produced in food and feed by two Aspergillus species (Aspergillus flavus and Aspergillus parasiticus). Several techniques have been reported for AFs detection including high-pressure liquid chromatography, enzyme-linked immunosorbent assay, surface plasmon resonance and recombinant immune blotting assay. But, these methods are disadvantaged because they consumed a long time for analysis; in addition, they required a piece of complicated and expensive equipment. Therefore, developing of inexpensive sensors with high selectivity and sensitivity for detecting of AFs levels without extensive sample preparation has received great attention. Several electrochemical AFs sensors have been reported; however, there is still a need for developing a new, simple and rapid electrochemical AFs sensor. Here, we have developed a new AFs sensor based on Au nanostructures/graphene nanosheets modified ITO substrate that could enhance the Raman effect and the electrochemical conductivity. The modified electrode was prepared based on layer-by-layer electrochemical deposition method. AFs antibody was immobilized onto the Au nanostructures/graphene nanosheets; then it was used as a probe for rapid, simple and cheap detection of AFs level using Raman spectroscopy and electrochemical techniques. Our results demonstrated that the developed system showed a simple, easy and sensitive sensor for monitoring low concentrations of AFB1 with a detection limit of about 6.9 pg/mL, also it allowed the determination of AFB1 in spiked food samples.


Assuntos
Aflatoxina B1/análise , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Eletrodos , Contaminação de Alimentos/análise , Nanopartículas Metálicas/química
15.
Mini Rev Med Chem ; 19(8): 688-705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30387392

RESUMO

BACKGROUND: Since deficit of acetylcholine has been evidenced in the Alzheimer's disease (AD) patients, cholinesterase inhibitors are currently the most specified drug category for the remediation of AD. METHOD: In the present study, 16 compounds (1-16) with dicarbonyl skeletons have been synthesized and tested for their inhibitory potential in vitro against AChE and BChE using ELISA microtiter plate assays at 100 µg/mL. Since metal accumulation is related to AD, the compounds were also tested for their metal-chelation capacity. RESULTS AND CONCLUSION: All the investigated dicarbonyl compounds exerted none or lower than 30% inhibition against both cholinesterases, whereas compounds 2, 8 and 11 showed 37, 42, 41% of inhibition towards BChE, being the most active. The highest metal-chelation capacity was observed with compound 8 (53.58 ± 2.06%). POM and DFT analyses are in good harmonization with experimental data.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/uso terapêutico , Desenho de Fármacos , Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos Moleculares
16.
RSC Adv ; 9(61): 35549-35558, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35528090

RESUMO

Lipid vesicles composed of cationic dioctadecyldimethylammonium bromide (DODAB) and neutral 1-monooleoyl-rac-glycerol (MO) are promising non-viral carriers of nucleic acids for delivery into cells. Among them, higher cell transfection efficiency was displayed by DODAB-rich vesicles than those enriched with MO. Structural relaxation of these mixed lipid vesicles plays a key role in their cell transfection efficiency because structural organization of the DODAB-rich vesicles are different from that of the MO-rich vesicles. Polarization-gated anisotropy in conjunction with picosecond resolved emission transients of a novel fluorophore 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN) has been employed to probe relaxation dynamics in pure DODAB vesicles, and in mixed vesicles of DODAB with varying content of MO. Both orientational relaxation of ACYMAN and relaxation dynamics of its local environment are retarded significantly in mixed lipid vesicles with increasing MO content, from a mole fraction (χ MO) of 0.2 to that of 0.8 which is consistent with increased rigidity of the MO-rich (χ MO > 0.5) vesicles relative to the DODAB-rich (χ MO < 0.5) vesicles. Therefore, higher structural rigidity of the MO-rich vesicles (χ MO > 0.5) gives rise to their lower cell transfection efficiency than the more flexible DODAB-rich (χ MO < 0.5) vesicles as observed in previous in vivo studies (Biochim. Biophys. Acta, Biomembr., 2014, 1838, 2555-2567).

17.
Mini Rev Med Chem ; 18(8): 711-716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28714400

RESUMO

BACKGROUND: Cholinesterase family consists of two sister enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which hydrolyze acetylcholine. Since deficit of acetylcholine has been evidenced in patients of Alzheimer's disease (AD), cholinesterase inhibitors are currently the most prescribed drugs for the treatment of AD. OBJECTIVE: our aim in this article was to investigate the inhibitory potential of five known compounds (2-6) with spiro skeleton against AChE and BChE using ELISA microplate assays. In addition to their ChE inhibitory effect, their physico-chemical properties were also calculated. Moreover, the present work aims at investigating the charge/geometrical effect of a hypothetical pharmacophore or bidentate site in a bioactive group, on the inhibition efficiency of spiro compounds 2-6 by using Petra/Osiris/ molinspiration (POM) and X-ray analyses. METHOD: In the present study, five compounds (2-6) with spiro skeleton have been synthesized and tested in vitro for their inhibitory potential against AChE and BChE using ELISA microtiter plate assays at 25 µg/mL. RESULTS: Results revealed that three of the spiro compounds tested exert more than 50% inhibition against one of cholinesterases. Compound 5 displayed 68.73 ± 4.73% of inhibition toward AChE, whereas compound 6 showed 56.17 ± 0.83% of inhibition toward BChE; these two previously synthesized compounds have been the most active hits. CONCLUSIONS: Our data obtained from screening of compounds 2-6 against the two cholinesterases indicate that three of these show good potential to selectively inhibit AChE or BChE. Spiro compounds 2, 5, and 6 exhibited the most potent activity of the series against AChE or BChE with inhibition values in the range 55-70%.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Compostos de Espiro/química , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Compostos de Espiro/metabolismo , Compostos de Espiro/uso terapêutico , Relação Estrutura-Atividade
18.
Chem Cent J ; 11(1): 88, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29086871

RESUMO

Suzuki C-C cross-coupling of aryl halides with aryl boronic acids using new phosphene-free palladium complexes as precatalysts was investigated. A pyridine-based Pd(II)-complex was used in open air under thermal as well as microwave irradiation conditions using water as an eco-friendly green solvent.

19.
Sci Rep ; 6: 34399, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677331

RESUMO

The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.

20.
J Fluoresc ; 26(6): 2087-2093, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27542171

RESUMO

A sensitive and selective spectrofluorimetric method has been developed for the rapid determination of europium(III). This method is based on the formation of nonluminous complex between Eu(III) and a Schiff base reagent N, N'-bis (salicylidene)-1,2-phenylenediamine (PABD) and measuring the fluorescence quenching of Eu(III)-PABD complex at λex/em = 390/577 nm. The fluorescence intensity complex decreased linearly by increasing the Eu(III) concentration in the range of 1.0-13.0 µM. The optimum conditions for the complex formation were determined such as a pH .0 of borate buffer. The limits of detection (LOD) and quantification (LOQ) of Eu(III) were determined and found to be 0.217 and 0.653 µM, respectively. The maximum relative standard deviation of the method for an europium(III) standard of 6.0 µM was 2.07 % (n = 6). The proposed procedures could be applied successfully for the determination of the investigated metal ion in some spiked water samples with a good precision and accuracy compared to official and reported methods as revealed by t- and F-tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA