Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496518

RESUMO

CD4 T cells are essential for immunity to M. tuberculosis (Mtb), and emerging evidence indicates that IL-17-producing Th17 cells contribute to immunity to Mtb. While identifying protective T cell effector functions is important for TB vaccine design, T cell antigen specificity is also likely to be important. To identify antigens that induce protective immunity, we reasoned that as in other pathogens, effective immune recognition drives sequence diversity in individual Mtb antigens. We previously identified Mtb genes under evolutionary diversifying selection pressure whose products we term Rare Variable Mtb Antigens (RVMA). Here, in two distinct human cohorts with recent exposure to TB, we found that RVMA preferentially induce CD4 T cells that express RoRγt and produce IL-17, in contrast to 'classical' Mtb antigens that induce T cells that produce IFNγ. Our results suggest that RVMA can be valuable antigens in vaccines for those already infected with Mtb to amplify existing antigen-specific Th17 responses to prevent TB disease.

2.
Cell Rep ; 43(3): 113948, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483908

RESUMO

Identifying individual functional B cell receptors (BCRs) is common, but two-dimensional analysis of B cell frequency versus BCR potency would delineate both quantity and quality of antigen-specific memory B cells. We efficiently determine quantitative BCR neutralizing activities using a single-cell-derived antibody supernatant analysis (SCAN) workflow and develop a frequency-potency algorithm to estimate B cell frequencies at various neutralizing activity or binding affinity cutoffs. In an HIV-1 fusion peptide (FP) immunization study, frequency-potency curves elucidate the quantity and quality of FP-specific immunoglobulin G (IgG)+ memory B cells for different animals, time points, and antibody lineages at single-cell resolution. The BCR neutralizing activities are mainly determined by their affinities to soluble envelope trimer. Frequency analysis definitively demonstrates dominant neutralizing antibody lineages. These findings establish SCAN and frequency-potency analyses as promising approaches for general B cell analysis and monoclonal antibody (mAb) discovery. They also provide specific rationales for HIV-1 FP-directed vaccine optimization.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Imunoglobulina G , Células B de Memória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA