Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 558(7709): 280-283, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899477

RESUMO

Catalysts are widely used to increase reaction rates. They function by stabilizing the transition state of the reaction at their active site, where the atomic arrangement ensures favourable interactions 1 . However, mechanistic understanding is often limited when catalysts possess multiple active sites-such as sites associated with either the step edges or the close-packed terraces of inorganic nanoparticles2-4-with distinct activities that cannot be measured simultaneously. An example is the oxidation of carbon monoxide over platinum surfaces, one of the oldest and best studied heterogeneous reactions. In 1824, this reaction was recognized to be crucial for the function of the Davy safety lamp, and today it is used to optimize combustion, hydrogen production and fuel-cell operation5,6. The carbon dioxide products are formed in a bimodal kinetic energy distribution7-13; however, despite extensive study 5 , it remains unclear whether this reflects the involvement of more than one reaction mechanism occurring at multiple active sites12,13. Here we show that the reaction rates at different active sites can be measured simultaneously, using molecular beams to controllably introduce reactants and slice ion imaging14,15 to map the velocity vectors of the product molecules, which reflect the symmetry and the orientation of the active site 16 . We use this velocity-resolved kinetics approach to map the oxidation rates of carbon monoxide at step edges and terrace sites on platinum surfaces, and find that the reaction proceeds through two distinct channels11-13: it is dominated at low temperatures by the more active step sites, and at high temperatures by the more abundant terrace sites. We expect our approach to be applicable to a wide range of heterogeneous reactions and to provide improved mechanistic understanding of the contribution of different active sites, which should be useful in the design of improved catalysts.

2.
Nat Chem ; 10(6): 592-598, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29483637

RESUMO

The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for ~1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

3.
J Phys Chem Lett ; 8(19): 4887-4892, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28930463

RESUMO

Electronically nonadiabatic dynamics can be important in collisions of molecules at surfaces; for example, when vibrational degrees of freedom of molecules are coupled to electron-hole-pair (EHP) excitation of a metal. Such dynamics have been inferred from a host of observations involving multiquantum relaxation of NO molecules scattered from metal surfaces. Electron transfer forming transient NO- is thought to be essential to the nonadiabatic coupling. The question remains: is this behavior usual? Here, we present final vibrational state distributions resulting from the scattering of CO(vi = 17) from Au(111), which exhibits significantly less vibrational relaxation than NO(vi = 16). We explain this observation in terms of the lower electron affinity of CO compared to NO, a result that is consistent with the formation of a transient CO- ion being important to CO vibrational relaxation.

4.
J Phys Chem A ; 117(36): 8750-60, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23808714

RESUMO

Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA