Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 403: 110297, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37406596

RESUMO

Salmonella enterica serovar Infantis is an emergent foodborne and zoonotic Salmonella serovar with critical implications for global health. In recent years, the prevalence of S. Infantis infections has increased in the United States, Europe, and Latin America, due to contaminated chicken and other foods. An essential trait of S. Infantis is its resistance to multiple antibiotics, including the critically important third-generation cephalosporins and quinolones, undermining effective medical treatment, particularly in low-resource settings. We describe the emergence of multidrug-resistant (MDR) S. Infantis, focusing on humans, animals, the environment, and food. We conducted a systematic review (1979-2021), selected 183 studies, and analyzed the origin, source, antimicrobial resistance, and presence of a conjugative plasmid of emerging S. Infantis (pESI) in reported isolates. S. Infantis has been detected worldwide, with a substantial increase since 2011. We found the highest number of isolations in the Americas (42.9 %), Europe (29.8 %), Western Pacific (17.2 %), Eastern Mediterranean (6.6 %), Africa (3.4 %), and South-East Asia (0.1 %). S. Infantis showed MDR patterns and numerous resistant genes in all sources. The primary source of MDR S. Infantis is broiler and their meat; however, this emerging pathogen is also present in other reservoirs such as food, wildlife, and the environment. Clinical cases of MDR S. Infantis have been reported in children and adults. The global emergence of S. Infantis is related to a plasmid (pESI) with antibiotic and arsenic- and mercury-resistance genes. Additionally, a new megaplasmid (pESI-like), carrying blaCTX-M-65 and antibiotic-resistant genes reported in an ancestral version, was detected in the broiler, human, and chicken meat isolates. Strains harboring pESI-like were primarily observed in the Americas and Europe. MDR S. Infantis has spread globally, potentially becoming a major public health threat, particularly in low- and middle-income countries.


Assuntos
Salmonella enterica , Criança , Animais , Humanos , Sorogrupo , Galinhas , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Front Cell Infect Microbiol ; 12: 897171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711664

RESUMO

Salmonella spp. is a relevant foodborne pathogen with worldwide distribution. To mitigate Salmonella infections, bacteriophages represent an alternative to antimicrobials and chemicals in food animals and food in general. Bacteriophages (phages) are viruses that infect bacteria, which interact constantly with their host. Importantly, the study of these interactions is crucial for the use of phages as a mitigation strategy. In this study, experimental coevolution of Salmonella Enteritidis (S. Enteritidis) and a lytic phage was conducted in tryptic soy broth for 21 days. Transfer to fresh media was conducted daily and every 24 hours, 2 mL of the sample was collected to quantify Salmonella OD600 and phage titter. Additionally, time-shift experiments were conducted on 20 colonies selected on days 1, 12, and 21 to evaluate the evolution of resistance to past (day 1), present (day 12), and future (day 21) phage populations. The behavior of the dynamics was modeled and simulated with mathematical mass-action models. Bacteria and phage from days 1 and 21 were sequenced to determine the emergence of mutations. We found that S. Enteritidis grew for 21 days in the presence and absence of the phage and developed resistance to the phage from day 1. Also, the phage was also able to survive in the media for 21 days, however, the phage titer decreased in approx. 3 logs PFU/mL. The stability of the lytic phage population was consistent with the leaky resistance model. The time-shift experiments showed resistance to phages from day 1 of at least 85% to the past, present, and future phages. Sequencing of S. Enteritidis showed mutations in genes involved in lipopolysaccharide biosynthesis genes rfbP and rfbN at day 21. The phage showed mutations in the tail phage proteins responsible for recognizing the cell surface receptors. These results suggest that interactions between bacteria and phage in a rich resource media generate a rapid resistance to the infective phage but a fraction of the population remains susceptible. Interactions between Salmonella and lytic phages are an important component for the rational use of phages to control this important foodborne pathogen.


Assuntos
Bacteriófagos , Fagos de Salmonella , Animais , Bacteriófagos/genética , Nutrientes , Fagos de Salmonella/genética , Salmonella enteritidis
4.
Front Microbiol ; 11: 2006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013743

RESUMO

Herpes simplex viruses (HSVs) type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population, and the infections they produce are lifelong with frequent reactivations throughout life. Both viruses produce uncomfortable and sometimes painful lesions in the orofacial and genital areas, as well as herpetic gingivostomatitis, among other clinical manifestations. At present, the most common treatments against HSVs consist of nucleoside analogs that target the viral polymerases. However, such drugs are poorly effective for treating skin lesions, as they only reduce in 1-2 days the duration of the herpetic lesions. Additionally, viral isolates resistant to these drugs can emerge in immunosuppressed individuals, and second-line drugs for such variants are frequently accompanied by adverse effects requiring medical supervision. Thus, novel or improved therapeutic drugs for treating HSV lesions are needed. Here, we assessed the potential antiviral activity of aqueous extracts obtained from two brown macroalgae, namely Macrocystis pyrifera and Durvillaea antarctica against HSVs. Both extracts showed antiviral activity against acyclovir-sensitive and acyclovir-resistant HSV-1 and HSV-2. Our analyses show that there is a significant antiviral activity associated with proteins in the extract, although other compounds also seem to contribute to inhibiting the replication cycle of these viruses. Evaluation of the algae extracts as topical formulations in an animal model of HSV-1 skin infection significantly reduced the severity of the disease more than acyclovir, as well as the duration of the herpetic lesions, when compared to mock-treated animals, with the D. antarctica extract performing best. Taken together, these findings suggest that these algae extracts may be potential phytotherapeutics against HSVs and may be useful for the treatment and reduction of common herpetic manifestations in humans.

5.
Antiviral Res ; 179: 104818, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32423887

RESUMO

Infections with herpes simplex viruses are lifelong and highly prevalent worldwide. Individuals with clinical symptoms elicited by HSVs may suffer from occasional or recurrent herpetic lesions in the orofacial and genital areas. Despite the existence of nucleoside analogues that interfere with HSV replication, such as acyclovir, these drugs are somewhat ineffective in treating skin lesions as topical formulations only reduce in one or few days the duration of the herpetic ulcers. Cetylpyridinium chloride (CPC) is a quaternary ammonium compound present in numerous hygiene products, such as mouthwashes, deodorants, aphtae-treating formulations and oral tablets as an anti-septic to limit bacterial growth. Some reports indicate that CPC can also modulate host signaling pathways, namely NF-κB signaling. Because HSV infection is modulated by NF-κB, we sought to assess whether CPC has antiviral effects against HSVs. Using wild-type HSV-1 and HSV-2, as well as viruses that are acyclovir-resistant or encode GFP reporter genes, we assessed the antiviral capacity of CPC in epithelial cells and human gingival fibroblasts expanded from the oral cavity and its mechanism of action. We found that a short, 10-min exposure to CPC added after HSV entry into the cells, significantly limited viral replication in both cell types by impairing viral gene expression. Interestingly, our results suggest that CPC blocks HSV replication by interfering with the translocation of NF-κB into the nucleus of HSV-infected cells. Taken together, these findings suggest that formulations containing CPC may help limit HSV replication in infected tissues and consequently reduce viral shedding.


Assuntos
Antivirais/farmacologia , Cetilpiridínio/farmacologia , Fibroblastos/efeitos dos fármacos , Simplexvirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fibroblastos/virologia , Expressão Gênica , Gengiva/citologia , Gengiva/virologia , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simplexvirus/fisiologia , Células Vero
6.
Front Microbiol ; 11: 139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117158

RESUMO

Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent within the human population and are characterized by lifelong infections and sporadic recurrences due to latent neuron infection. Upon reactivations, HSVs may manifest either, symptomatically or asymptomatically and be shed onto others through mucosae body fluids. Although, HSVs can produce severe disease in humans, such as life-threatening encephalitis and blindness, the most common symptoms are skin and mucosal lesions in the oro-facial and the genital areas. Nucleoside analogs with antiviral activity can prevent severe HSV infection, yet they are not very effective for treating skin manifestations produced by these viruses, as they only reduce in a few days at most the duration of lesions. Additionally, HSV variants that are resistant to these antivirals may arise, especially in immunosuppressed individuals. Thus, new antivirals that can reduce the severity and duration of these cutaneous manifestations would certainly be welcome. Here, we review currently available anti-herpetic therapies, novel molecules being assessed in clinical trials and new botanical compounds reported in the last 20 years with antiviral activities against HSVs that might represent future treatments against these viruses.

7.
Front Cell Neurosci ; 13: 46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863282

RESUMO

Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA