Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142365

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the severe pandemic of acute respiratory disease, coronavirus disease 2019 (COVID-19), experienced in the 21st century. The clinical manifestations range from mild symptoms to abnormal blood coagulation and severe respiratory failure. In severe cases, COVID-19 manifests as a thromboinflammatory disease. Damage to the vascular compartment caused by SARS-CoV-2 has been linked to thrombosis, triggered by an enhanced immune response. The molecular mechanisms underlying endothelial activation have not been fully elucidated. We aimed to identify the proteins correlated to the molecular response of human umbilical vein endothelial cells (HUVECs) after exposure to SARS-CoV-2, which might help to unravel the molecular mechanisms of endothelium activation in COVID-19. In this direction, we exposed HUVECs to SARS-CoV-2 and analyzed the expression of specific cellular receptors, and changes in the proteome of HUVECs at different time points. We identified that HUVECs exhibit non-productive infection without cytopathic effects, in addition to the lack of expression of specific cell receptors known to be essential for SARS-CoV-2 entry into cells. We highlighted the enrichment of the protein SUMOylation pathway and the increase in SUMO2, which was confirmed by orthogonal assays. In conclusion, proteomic analysis revealed that the exposure to SARS-CoV-2 induced oxidative stress and changes in protein abundance and pathways enrichment that resembled endothelial dysfunction.


Assuntos
Fenômenos Biológicos , COVID-19 , Células Endoteliais , Humanos , Proteoma , Proteômica , SARS-CoV-2
2.
Cancer Lett ; 491: 108-120, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32841713

RESUMO

Breast cancer is the most common malignant tumor among women worldwide, and triple-negative breast cancer is the most aggressive type of breast cancer, which does not respond to hormonal therapies. The protease inhibitor, EcTI, extracted from seeds of Enterolobium contortisiliquum, acts on the main signaling pathways of the MDA-MB-231 triple-negative breast cancer cells. This inhibitor, when bound to collagen I of the extracellular matrix, triggers a series of pathways capable of decreasing the viability, adhesion, migration, and invasion of these cells. This inhibitor can interfere in the cell cycle process through the main signaling pathways such as the adhesion, Integrin/FAK/SRC, Akt, ERK, and the cell death pathway BAX and BCL-2. It also acts by reducing the main inflammatory cytokines such as TGF-α, IL-6, IL-8, and MCP-1, besides NFκB, a transcription factor, responsible for the aggressive and metastatic characteristics of this type of tumor. Thus, the inhibitor was able to reduce the main processes of carcinogenesis of this type of cancer.


Assuntos
Citocinas/antagonistas & inibidores , Fabaceae/química , Glicosaminoglicanos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Inibidores da Tripsina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Citocinas/biossíntese , Feminino , Humanos , Metaloproteinases da Matriz/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Inibidores da Tripsina/uso terapêutico
3.
J Neurochem ; 148(1): 80-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347438

RESUMO

The recombinant Lonomia obliqua Stuart-factor activator (rLosac) is a recombinant hemolin which belongs to the immunoglobulin superfamily of cell adhesion molecules. It is capable of inducing pro-survival activity in serum-deprived human umbilical vein endothelial cells (HUVECs) and fibroblasts by increasing mitochondrial metabolism. We hypothesize that it could promote neuronal survival by acting on neuroenergetics. Our study reveals that treatment of primary mouse cortical neurons cultured in neurobasal medium lacking B27 supplement with rLosac led to an enhancement of cell viability in a time- and concentration-dependent manner. In parallel, preserved or enhanced phosphorylation of Akt, p44, and p42 MAPK, as well as mTOR was observed following treatment with rLosac. During deprivation, as assessed by western blot and qRT-PCR, protein and mRNA expression of MCT2 (the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate) decreased significantly in B27 supplement-deprived cortical neurons and was hardly detected after 24 h of deprivation. Interestingly, rLosac maintained MCT2 protein expression after 24 h of deprivation including at the cell surface without preventing mRNA loss. MCT2 knockdown reduced rLosac-enhanced cell viability, confirming its involvement in rLosac effect. Enhanced uptake of lactate was detected following rLosac treatment and might contribute to rLosac-enhanced viability during deprivation. In the presence of both lactate and rLosac, cell viability was higher than in the presence of lactate alone. Our observations suggest that rLosac promotes cell viability in stressed (B27 supplement-deprived) neurons by facilitating the use of lactate as energy substrate via the preservation of MCT2 protein expression. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Proteínas de Insetos/farmacologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeo Hidrolases/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Camundongos , Neurônios/metabolismo , Proteínas Recombinantes/farmacologia , Estresse Fisiológico
4.
Biochim Biophys Acta ; 1864(10): 1428-35, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27479486

RESUMO

BACKGROUND: Cancer has long been associated with thrombosis and many of the standard chemotherapeutics used to treat cancer are pro-thrombotic. Thus, the identification of novel selective anticancer drugs that also have antithrombotic properties is of enormous significance. Amblyomin-X is an anticancer protein derived from the salivary glands of the Amblyomma cajennense tick. METHODS: In this work, we determined the inhibition profile of Amblyomin-X and its effect on activated partial thromboplastin time (aPTT) and prothrombin time (PT), using various approaches such as, kinetic analyses, amidolytic assays, SDS-PAGE, and mass spectrometry. RESULTS: Amblyomin-X inhibited factor Xa, prothrombinase and tenase activities. It was hydrolyzed by trypsin and plasmin. MS/MS data of tryptic hydrolysate of Amblyomin-X suggested the presence of Cys(8)-Cys(59) and Cys(19)-Cys(42) but not Cys(34)-Cys(55) disulfide bond. Instead of Cys(34)-Cys(55), two noncanonical Cys(34)-Cys(74) and Cys(55)-Cys(74) disulfide bonds were identified. Furthermore, when Amblyomin-X (1mg/kg) injected in rabbits, it prolonged aPTT and PT. CONCLUSION: Amblyomin-X is a noncompetitive inhibitor (Ki=3.9µM) of factor Xa. It is a substrate for plasmin and trypsin, but not for factor Xa and thrombin. The disulfide Cys(34)-Cys(55) bond probably scrambles with interchain seventh free cysteine residues (Cys(74)) of Amblyomin-X. The prolongation of PT and aPTT is reversible. GENERAL SIGNIFICANCE: In term of anticoagulant property, this is structural and functional characterization of Amblyomin-X. All together, these results and previous findings suggest that Amblyomin-X has a potential to become an anticancer drug with antithrombotic property.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Inibidores do Fator Xa/farmacologia , Fator Xa/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas de Artrópodes , Testes de Coagulação Sanguínea/métodos , Humanos , Masculino , Domínios Proteicos , Tempo de Protrombina/métodos , Coelhos , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Trombose/dietoterapia , Carrapatos/metabolismo
5.
Infect Immun ; 81(5): 1764-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478319

RESUMO

We have recently reported the ability of Leptospira to capture plasminogen (PLG) and generate plasmin (PLA) bound on the microbial surface in the presence of exogenous activators. In this work, we examined the effects of leptospiral PLG binding for active penetration through the endothelial cell barrier and activation. The results indicate that leptospires with PLG association or PLA activation have enhanced migration activity through human umbilical vein endothelial cell (HUVEC) monolayers compared with untreated bacteria. Leptospira cells coated with PLG were capable of stimulating the expression of PLG activators by HUVECs. Moreover, leptospires endowed with PLG or PLA promoted transcriptional upregulation matrix metalloprotease 9 (MMP-9). Serum samples from patients with confirmed leptospirosis showed higher levels of PLG activators and total MMP-9 than serum samples from normal (healthy) subjects. The highest level of PLG activators and total MMP-9 was detected with microscopic agglutination test (MAT)-negative serum samples, suggesting that this proteolytic activity stimulation occurs at the early stage of the disease. Furthermore, a gelatin zymography profile obtained for MMPs with serum samples from patients with leptospirosis appears to be specific to leptospiral infection because serum samples from patients with unrelated infectious diseases produced no similar degradation bands. Altogether, the data suggest that the Leptospira-associated PLG or PLA might represent a mechanism that contributes to bacterial penetration of endothelial cells through an activation cascade of events that enhances the proteolytic capability of the organism. To our knowledge, this is the first proteolytic activity associated with leptospiral pathogenesis described to date.


Assuntos
Células Endoteliais/enzimologia , Leptospira interrogans/patogenicidade , Leptospirose/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteólise , Ensaio de Imunoadsorção Enzimática , Fibrinolisina/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Leptospira interrogans/metabolismo , Leptospirose/metabolismo , Plasminogênio/metabolismo , Ativadores de Plasminogênio/sangue , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA