Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Toxicon ; 238: 107568, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38110040

RESUMO

Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1ß, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and ß-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.


Assuntos
Animais Peçonhentos , Venenos de Artrópodes , Artrópodes , Artropatias , Venenos de Escorpião , Escorpiões , Viperidae , Animais , Humanos , Interleucina-10 , Interleucina-6 , Interleucina-8 , Venenos de Serpentes/química , Citocinas , Fator de Necrose Tumoral alfa , Anti-Inflamatórios
2.
Front Mol Biosci ; 9: 936107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052162

RESUMO

Salivary glands are vital structures responsible for successful tick feeding. The saliva of ticks contains numerous active molecules that participate in several physiological processes. A Kunitz-type factor Xa (FXa) inhibitor, similar to the tissue factor pathway inhibitor (TFPI) precursor, was identified in the salivary gland transcriptome of Amblyomma sculptum ticks. The recombinant mature form of this Kunitz-type inhibitor, named Amblyomin-X, displayed anticoagulant, antiangiogenic, and antitumor properties. Amblyomin-X is a protein that inhibits FXa in the blood coagulation cascade and acts via non-hemostatic mechanisms, such as proteasome inhibition. Amblyomin-X selectively induces apoptosis in cancer cells and promotes tumor regression through these mechanisms. Notably, the cytotoxicity of Amblyomin-X seems to be restricted to tumor cells and does not affect non-tumorigenic cells, tissues, and organs, making this recombinant protein an attractive molecule for anticancer therapy. The cytotoxic activity of Amblyomin-X on tumor cells has led to vast exploration into this protein. Here, we summarize the function, action mechanisms, structural features, pharmacokinetics, and biodistribution of this tick Kunitz-type inhibitor recombinant protein as a promising novel antitumor drug candidate.

3.
Front Mol Biosci ; 9: 904737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847970

RESUMO

The pursuit of better therapies for disorders creating deficiencies in skeletal muscle regeneration is in progress, and several biotoxins are used in skeletal muscle research. Since recombinant proteins derived from Lonomia obliqua bristles, recombinant Lonomia obliqua Stuart-factor activator (rLosac) and recombinant Lonomia obliqua prothrombin activator protease (rLopap) act as cytoprotective agents and promote cell survival, we hypothesize that both rLosac and rLopap favour the skeletal muscle regeneration process. In the present work, we investigate the ability of these recombinant proteins rLosac and rLopap to modulate the production of key mediators of the myogenic process. The expression of myogenic regulatory factors (MRFs), cell proliferation, the production of prostaglandin E2 (PGE2) and the protein expression of cyclooxygenases COX-1 and COX-2 were evaluated in C2C12 mouse myoblasts pre-treated with rLosac and rLopap. We found an increased proliferation of myoblasts, stimulated by both recombinant proteins. Moreover, these proteins modulated PGE2 release and MRFs activities. We also found an increased expression of the EP4 receptor in the proliferative phase of C2C12 cells, suggesting the involvement of this receptor in the effects of PGE2 in these cells. Moreover, the recombinant proteins inhibited the release of IL-6 and PGE2, which is induced by an inflammatory stimulus by IL-1ß. This work reveals rLopap and rLosac as promising proteins to modulate processes involving tissue regeneration as occurs during skeletal muscle injury.

4.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566311

RESUMO

Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.


Assuntos
Fabaceae , Melanoma , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Melanoma/metabolismo , Processos Neoplásicos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores da Tripsina/farmacologia
5.
Food Chem (Oxf) ; 4: 100093, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415693

RESUMO

We determined the phytochemical composition, anti-inflammatory mechanism of action, ROS/RNS scavenging capacity and systemic toxicity of a purified subfraction (S8) of Eugenia selloi. The composition of S8 was assessed by LC-ESI-QTOF-MS; the anti-inflammatory activity in RAW264.7 macrophages through NF-κB activation and biomarkers by multiplex in THP-1 cells; neutrophil migration, intravital microscopy and ICAM-1 expression in mice; NETs formation and CD11b expression; S8 scavenging capacity of ROS/RNS; toxicity in Galleria mellonella larvae model. Coumaric acid, quercetrin and vanillic acid were identified. S8 decreased NF-κB activation, IL-1ß, IL-6, IL-10, MDC and MCP-1 levels, reduced neutrophil migration and ICAM-1 expression in mice; S8 did not interfere NET formation and CD11b expression, exhibited high antioxidant and showed negligible toxicity. E. selloi proved to be a promising, yet underexplored source of bioactive compounds, which can be useful employed in agribusiness and in the pharmaceutical and food industry to develop new products or human health supplies.

6.
Toxins (Basel) ; 13(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34941670

RESUMO

As a tribute to Butantan Institute in its 120th anniversary, this review describes some of the scientific research efforts carried out in the study of Lonomia envenoming in Brazil, a country where accidents with caterpillars reach over 42,000 individuals per year (especially in South and Southeast Brazil). Thus, the promising data regarding the studies with Lonomia's toxins contributed to the creation of new research centers specialized in toxinology based at Butantan Institute, as well as to the production of the antilonomic serum (ALS), actions which are in line with the Butantan Institute mission "to research, develop, manufacture, and provide products and services for the health of the population". In addition, the study of the components of the Lonomia obliqua bristle extract led to the discovery of new molecules with peculiar properties, opening a field of knowledge that could lead to the development and innovation of new drugs aimed at cell regeneration and inflammatory diseases.


Assuntos
Venenos de Artrópodes/toxicidade , Borboletas/fisiologia , Mordeduras e Picadas de Insetos/terapia , Animais , Brasil/epidemiologia , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Larva/fisiologia
7.
Toxins (Basel) ; 13(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209394

RESUMO

Envenomation caused by contact with Lonomia obliqua bristles is characterized by pain, an intense systemic proinflammatory reaction and disturbances in the coagulation cascade that can cause severe clinical manifestations and death. However, the role of immune system components in these effects is still poorly understood. In this study, we evaluated the cytotoxic effect of L. obliqua venom on THP-1-derived macrophages and its ability to modulate inflammatory markers, as well as the cytokine and chemokine release profile. Our results show that L. obliqua venom is able to directly exert a potent pro-inflammatory reaction in macrophages, characterized by the activation of the NF-κB transcription factor pathway, the expression of CD80 and CD83, and the release of pro-inflammatory mediators such as TNF-α, IL-1ß, IL-6, IL-8 and CXCL10. These results suggest that macrophages can play an important role during the orchestration of the inflammatory response present in envenomation caused by Lonomia obliqua caterpillars.


Assuntos
Venenos de Artrópodes/toxicidade , Larva , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Animais , Antígenos CD/metabolismo , Antígeno B7-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoglobulinas/metabolismo , Lepidópteros , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Células THP-1 , Antígeno CD83
8.
Artigo em Inglês | MEDLINE | ID: mdl-28031734

RESUMO

BACKGROUND: Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolin's roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosac's in vivo effects using a skin wound healing model in rats. METHODS: Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. RESULTS: The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. CONCLUSION: The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations.

9.
Biomed Pharmacother ; 82: 537-46, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27470394

RESUMO

Fibroblasts are the main cellular component of connective tissues and play important roles in health and disease through the production of collagen, fibronectin and growth factors. Under certain conditions, such as wound healing, fibroblasts intensify their metabolic demand, while the restriction of nutrients affect matrix composition, cell metabolism and behavior. In lepidopterans, wound healing is regulated by ecdysteroid hormones, which upregulate multifunctional proteins such as hemolin. However, the role of hemolin in cell proliferation and wound healing is not clear. rLosac is a recombinant hemolin from the caterpillar Lonomia obliqua whose proliferative and cytoprotective effects on endothelial cells have been described. Here, we show that rLosac induces a marked cell survival effect on fibroblast submitted to serum deprivation, which is observable as early as 24h, as demonstrated through the MTT assay, as well as an increase in migration of human dermal fibroblasts (HDF). No effects on cell proliferation or cell cycle distribution of fibroblasts in normal conditions were observed, suggesting that rLosac induces an effect in stressful conditions such serum deprivation but not when nutrient are sufficient. By flow cytometry, rLosac caused an apparent dose-dependent increase in cells in the S phase of the cell cycle and a significant reduction of cells with fragmented DNA. Furthermore, treatment with rLosac results in a significant decrease in the production of reactive oxygen species and in the loss of mitochondrial membrane potential, indicating that a reduction in oxidative stress is involved in rLosac-mediated cytoprotection. Our results also show an up-regulation of Bcl-2 and a down-regulation of Bax protein levels, inhibition of cytochrome c release and a reduction in caspase-3 levels, all considered critical factors for apoptosis. Moreover, rLosac treatment reduces the morphological changes induced by prolonged serum deprivation including the emergence of apoptotic bodies, nucleus fragmentation, cytoplasmic vacuolization and loss of extracellular matrix organization. The wound scratch test assay revealed that rLosac could enhance wound healing in vitro. Altogether, these findings suggest that rLosac strongly induces cellular protection in conditions of stress by serum deprivation preventing damage and loss of mitochondrial function by inhibiting apoptosis. This finding opens a new perspective to further understand the role of hemolin proteins during cellular processes such as wound healing and development.


Assuntos
Apoptose/efeitos dos fármacos , Fibroblastos/citologia , Imunoglobulinas/farmacologia , Proteínas de Insetos/farmacologia , Animais , Caspase 3/metabolismo , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Derme/citologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Citometria de Fluxo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Peptídeo Hidrolases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
J. venom. anim. toxins incl. trop. dis ; 22: [1-8], 2016. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484658

RESUMO

Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolins roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosacs in vivo effects using a skin wound healing model in rats. Methods Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. Results The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. Conclusion The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations.


Assuntos
Cicatrização , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/efeitos adversos , Lepidópteros/química
11.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954806

RESUMO

Background Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolin's roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosac's in vivo effects using a skin wound healing model in rats. Methods Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. Results The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. Conclusion The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations.(AU)


Assuntos
Pele/lesões , Cicatrização , Ferimentos e Lesões , Proteínas , Proliferação de Células , Células Epiteliais , Lepidópteros
12.
Thromb Haemost ; 108(3): 570-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22782262

RESUMO

The strategic position of factor Xa (FXa) in blood coagulation makes it a compelling target for the development of new anticoagulants. Blood-sucking animals have in their salivary glands mixtures of anticoagulants, which could be used for designing novel antithrombotic compounds. Herein, we describe Vizottin, the first FXa inhibitor from the salivary complex of the leech Haementeria vizottoi . Vizottin was purified by gel filtration and reverse-phase chromatography, and shown to have anticoagulant effects in human plasma, prolonging the recalcification time in a dose-dependent manner (IC50 40 nM). Vizottin induced blood incoagulability in FX-deficient plasma, whereas in normal and reconstituted plasma, Vizottin doubled the prothrombin time at 160 nM. This peptide competitively inhibited human FXa (K(i) 2 nM) like FXa inhibitors from other leeches, albeit via a distinct mechanism of action. At high concentrations, vizottin inhibited the amidolytic activity of factor VIIa/tissue factor (IC50 96.4 nM). Vizottin inhibited FXa in the prothrombinase complex and Gla-domainless FXa. Moreover, vizottin did not interfere with FX activation induced by RVV-X, a known enzyme that requires the Gla-domain of FX for activation. Competition experiments in the presence of FXa and GGACK-FXa (active site blocked) demonstrated that the inhibition of FXa by vizottin is through binding to the active site rather than an exosite. This novel inhibitor appears to exert its inhibitory effects through direct binding to the active site of FXa in a time-dependent manner, but not involving a tight-binding model. In this context, vizottin is a promising model for designing novel anticoagulants for the treatment of thrombotic diseases.


Assuntos
Anticoagulantes/farmacologia , Inibidores do Fator Xa , Sanguessugas/química , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Anticoagulantes/isolamento & purificação , Coagulação Sanguínea/efeitos dos fármacos , Testes de Coagulação Sanguínea , Domínio Catalítico/efeitos dos fármacos , Cromatografia em Gel , Cromatografia de Fase Reversa , Compostos Cromogênicos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Fator VIIa/antagonistas & inibidores , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacologia , Humanos , Lipoproteínas/farmacologia , Ligação Proteica/efeitos dos fármacos , Glândulas Salivares/química , Proteínas e Peptídeos Salivares/farmacologia
13.
J Biol Chem ; 286(9): 6918-28, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21177860

RESUMO

Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not γ-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Coagulação Sanguínea/efeitos dos fármacos , Simulação por Computador , Cisteína Endopeptidases/farmacologia , Fator X/metabolismo , Fator Xa/metabolismo , Imunoglobulinas/farmacologia , Proteínas de Insetos/farmacologia , Dados de Sequência Molecular , Mariposas/metabolismo , Proteínas de Neoplasias/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
14.
Biochem Biophys Res Commun ; 343(4): 1216-23, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16597435

RESUMO

Contact with the bristles of the caterpillar Lonomia obliqua can cause serious hemorrhage. Previously it was reported that a procoagulant protein (Lopap) in the bristle extract of L. obliqua increases cell longevity by inhibiting apoptosis. In this work, we purified from bristle extract a factor X activator that stimulates proliferation of endothelial cells. This protein, named Losac, was purified by ion exchange chromatography, followed by gel filtration chromatography and reverse-phase HPLC. Losac is a 45-kDa protein that activates factor X in a concentration-dependent manner and does not depend on calcium ions. In cultures of HUVECs, Losac increased cell proliferation and inhibited the apoptosis induced by starvation. HUVECs incubated with Losac (0.58microM for 1h) increased release of nitric oxide and tissue-plasminogen activator, which both may mediate anti-apoptosis. Losac also increased slightly the decay-accelerating factor (DAF=CD55), which protects cells from complement-mediated lysis. On the other hand, Losac did not alter the release or expression of von Willebrand factor, tissue factor, intercellular adhesion molecule-1, interleukin-8, and prostacyclin. These characteristics indicate that Losac, a protein with procoagulant activity, also functions as a growth stimulator and an inhibitor of cellular death for endothelial cells. Losac may have biotechnological applications, including the reduction of cell death and consequently increased productivity of animal cell cultures, and the use of hemolymph of L. obliqua for this purpose is already being explored. Further study is required to elucidate the mechanism for the inhibition of apoptosis by Losac.


Assuntos
Apoptose , Sobrevivência Celular , Cisteína Endopeptidases/metabolismo , Proteínas de Insetos/fisiologia , Mariposas/metabolismo , Proteínas de Neoplasias/metabolismo , Estruturas Animais/química , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisteína Endopeptidases/isolamento & purificação , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Epoprostenol/metabolismo , Humanos , Proteínas de Insetos/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-8/metabolismo , Mariposas/química , Proteínas de Neoplasias/isolamento & purificação , Óxido Nítrico/metabolismo , Tromboplastina/metabolismo , Extratos de Tecidos/química , Fator de von Willebrand/metabolismo
15.
Pathophysiol Haemost Thromb ; 34(4-5): 228-33, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16707933

RESUMO

Skin contact with Lonomia caterpillar bristles causes a consumptive coagulopathy. From a cDNA library we cloned and expressed a prothrombin activator (rLopap) in active form, and from the bristles extract we characterized a FX activator (Losac). Several clones were sequenced and analyzed by expressed sequence tags. A database of about 1,270 sequences was constructed and deposited in NCBI (CX815710-CX817210) [corrected] Both the native protein from the venom (Lopap) and the recombinant form (r-Lopap) promoted prothrombin hydrolysis, generating prethrombin-2, F1.2 and thrombin. Losac is a single-chain (43 kDa) protein that cleaves the FX heavy chain producing FXaalpha. In HUVECs rLopap and Losac are able to modulate cell survival by preventing apoptosis. rLopap increases NO and PGI2 concentration and Losac induces t-PA expression. Finally, to identify the venom proteins related to human envenomation, a 2D electrophoresis map is being performed as an attempt to find the major toxins recognized by the anti-lonomia venom.


Assuntos
Cisteína Endopeptidases/farmacologia , Lepidópteros/patogenicidade , Proteínas de Neoplasias/farmacologia , Serina Endopeptidases/farmacologia , Animais , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/isolamento & purificação , Coagulação Intravascular Disseminada/induzido quimicamente , Biblioteca Gênica , Humanos , Larva/patogenicidade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Análise de Sequência de DNA , Serina Endopeptidases/genética , Serina Endopeptidases/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA