Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(18): 6800-6815, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725508

RESUMO

A CoII-porphyrin complex (1) with an appended aza-crown ether for Lewis acid (LA) binding was synthesized and characterized. NMR spectroscopy and electrochemistry show that cationic group I and II LAs (i.e., Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) bind to the aza-crown ether group of 1. The binding constant for Li+ is comparable to that observed for a free aza-crown ether. LA binding causes an anodic shift in the CoII/CoI couple of between 10 and 40 mV and also impacts the CoIII/CoII couple. The magnitude of the anodic shift of the CoII/CoI couple varies linearly with the strength of the LA as determined by the pKa of the corresponding metal-aqua complex, with dications giving larger shifts than monocations. The extent of the anodic shift of the CoII/CoI couple also increases as the ionic strength of the solution decreases. This is consistent with electric field effects being responsible for the changes in the redox properties of 1 upon LA binding and provides a novel method to tune the reduction potential. Density functional theory calculations indicate that the bound LA is 5.6 to 6.8 Å away from the CoII ion, demonstrating that long-range electrostatic effects, which do not involve changes to the primary coordination sphere, are responsible for the variations in redox chemistry. Compound 1 was investigated as a CO2 reduction electrocatalyst and shows high activity but rapid decomposition.

2.
ACS Catal ; 14(9): 6897-6914, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38737398

RESUMO

A family of 4,4'-tBu2-2,2'-bipyridine (tBubpy) ligands with substituents in either the 6-position, 4,4'-tBu2-6-Me-bpy (tBubpyMe), or 6 and 6'-positions, 4,4'-tBu2-6,6'-R2-bpy (tBubpyR2; R = Me, iPr, sBu, Ph, or Mes), was synthesized. These ligands were used to prepare Ni complexes in the 0, I, and II oxidation states. We observed that the substituents in the 6 and 6'-positions of the tBubpy ligand impact the properties of the Ni complexes. For example, bulkier substituents in the 6,6'-positions of tBubpy better stabilized (tBubpyR2)NiICl species and resulted in cleaner reduction from (tBubpyR2)NiIICl2. However, bulkier substituents hindered or prevented coordination of tBubpyR2 ligands to Ni0(cod)2. In addition, by using complexes of the type (tBubpyMe)NiCl2 and (tBubpyR2)NiCl2 as precatalysts for different XEC reactions, we demonstrated that the 6 or 6,6' substituents lead to major differences in catalytic performance. Specifically, while (tBubpyMe)NiIICl2 is one of the most active catalysts reported to date for XEC and can facilitate XEC reactions at room temperature, lower turnover frequencies were observed for catalysts containing tBubpyR2 ligands. A detailed study on the catalytic intermediates (tBubpy)Ni(Ar)I and (tBubpyMe2)Ni(Ar)I revealed several factors that likely contributed to the differences in catalytic activity. For example, whereas complexes of the type (tBubpy)Ni(Ar)I are low spin and relatively stable, complexes of the type (tBubpyMe2)Ni(Ar)I are high-spin and less stable. Further, (tBubpyMe2)Ni(Ar)I captures primary and benzylic alkyl radicals more slowly than (tBubpy)Ni(Ar)I, consistent with the lower activity of the former in catalysis. Our findings will assist in the design of tailor-made ligands for Ni-catalyzed transformations.

3.
J Am Chem Soc ; 146(12): 7998-8004, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38507795

RESUMO

A high-surface-area p-type porous Si photocathode containing a covalently immobilized molecular Re catalyst is highly selective for the photoelectrochemical conversion of CO2 to CO. It gives Faradaic efficiencies of up to 90% for CO at potentials of -1.7 V (versus ferrocenium/ferrocene) under 1 sun illumination in an acetonitrile solution containing phenol. The photovoltage is approximately 300 mV based on comparisons with similar n-type porous Si cathodes in the dark. Using an estimate of the equilibrium potential for CO2 reduction to CO under optimized reaction conditions, photoelectrolysis was performed at a small overpotential, and the onset of electrocatalysis in cyclic voltammograms occurred at a modest underpotential. The porous Si photoelectrode is more stable and selective for CO production than the photoelectrode generated by attaching the same Re catalyst to a planar Si wafer. Further, facile characterization of the porous Si-based photoelectrodes using transmission mode FTIR spectroscopy leads to highly reproducible catalytic performance.

4.
J Inorg Biochem ; 249: 112390, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801884

RESUMO

Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.


Assuntos
Hidrogênio , Porfirinas , Cobalto , Catálise , Peptídeos
5.
ACS Catal ; 12(23): 14689-14697, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504916

RESUMO

A semisynthetic electrocatalyst for carbon dioxide reduction to carbon monoxide in water is reported. Cobalt microperoxidase-11 (CoMP11-Ac) is shown to reduce CO2 to CO with a turnover number of up to 32,000 and a selectivity of up to 88:5 CO:H2. Higher selectivity for CO production is favored by a less cathodic applied potential and use of a higher pK a buffer. A mechanistic hypothesis is presented in which avoiding the formation and protonation of a formal Co(I) species favors CO production. These results demonstrate how tuning reaction conditions impact reactivity toward CO2 reduction for a biocatalyst previously developed for H2 production.

6.
Inorg Chem ; 59(12): 8061-8069, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32436698

RESUMO

The effect of buffer pKa on the mechanism of electrochemical hydrogen evolution catalyzed by a cobalt porphyrin peptide (CoMP11-Ac) at constant pH is presented. The addition of buffer to CoMP11-Ac in water and KCl leads to an enhancement of the catalytic current of up to 200-fold relative to its value in the absence of a buffer. Two distinct catalytic regimes are identified as a function of the buffer pKa. In the presence of buffers with pKa ≤ 7.4, a fast catalysis regime limited by diffusion of buffer is reached. The catalytic half-wave potential (Eh) shifts anodically (from -1.42 to -1.26 V vs Ag/AgCl/KCl(1M)) as the buffer pKa decreases from 7.4 to 5.6, proposed to result from fast Co(III)-H formation following the catalysis-initiating Co(II/I) reduction. With higher-pKa buffers (pKa > 7.7), an Eh = -1.42 V, proposed to reflect the Co(II/I) couple, is maintained independent of the buffer pKa, consistent with rate-limiting Co(III)-H formation under these conditions. We conclude that the buffer species pKa impacts catalytic current and potential and the rate-determining step of the reaction.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Hidrogênio/química , Peptídeos/química , Porfirinas/química , Catálise , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA