Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37971882

RESUMO

Despite strong indications that interactions between melanoma and lymphatic vessels actively promote melanoma progression, the molecular mechanisms are not yet completely understood. To characterize molecular factors of this crosstalk, we established human primary lymphatic endothelial cell (LEC) cocultures with human melanoma cell lines. Here, we show that coculture with melanoma cells induced transcriptomic changes in LECs and led to multiple changes in their function. WNT5B, a paracrine signaling molecule upregulated in melanoma cells upon LEC interaction, was found to contribute to the functional changes in LECs. Moreover, WNT5B transcription was regulated by Notch3 in melanoma cells following the coculture with LECs, and Notch3 and WNT5B were coexpressed in melanoma patient primary tumor and metastasis samples. Moreover, melanoma cells derived from LEC coculture escaped efficiently from the primary site to the proximal tumor-draining lymph nodes, which was impaired upon WNT5B depletion. This supported the role of WNT5B in promoting the metastatic potential of melanoma cells through its effects on LECs. Finally, DLL4, a Notch ligand expressed in LECs, was identified as an upstream inducer of the Notch3/WNT5B axis in melanoma. This study elucidated WNT5B as a key molecular factor mediating bidirectional crosstalk between melanoma cells and lymphatic endothelium and promoting melanoma metastasis.


Assuntos
Vasos Linfáticos , Melanoma , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Endoteliais/metabolismo , Metástase Linfática/patologia , Vasos Linfáticos/patologia , Melanoma/patologia , Transdução de Sinais , Proteínas Wnt/metabolismo
2.
Methods Mol Biol ; 2265: 141-154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704712

RESUMO

Three-dimensional (3D) cell culture has allowed a deeper understanding of complex pathological and physiological processes, overcoming some of the limitations of 2D cell culture on plastic and avoiding the costs and ethical issues related to experiments involving animals. Here we describe a protocol to embed single melanoma cells alone or together with primary human lymphatic endothelial cells in a 3D cross-linked matrix, to investigate the invasion and molecular crosstalk between these two cell types, respectively. After fixation and staining with antibodies and fluorescent conjugates, phenotypic changes in both cell types can be specifically analyzed by confocal microscopy.


Assuntos
Técnicas de Cocultura/métodos , Células Endoteliais/metabolismo , Melanoma/metabolismo , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/citologia , Imunofluorescência/métodos , Humanos , Melanoma/patologia , Microscopia Confocal , Invasividade Neoplásica
3.
Elife ; 72018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29712618

RESUMO

Lymphatic invasion and lymph node metastasis correlate with poor clinical outcome in melanoma. However, the mechanisms of lymphatic dissemination in distant metastasis remain incompletely understood. We show here that exposure of expansively growing human WM852 melanoma cells, but not singly invasive Bowes cells, to lymphatic endothelial cells (LEC) in 3D co-culture facilitates melanoma distant organ metastasis in mice. To dissect the underlying molecular mechanisms, we established LEC co-cultures with different melanoma cells originating from primary tumors or metastases. Notably, the expansively growing metastatic melanoma cells adopted an invasively sprouting phenotype in 3D matrix that was dependent on MMP14, Notch3 and ß1-integrin. Unexpectedly, MMP14 was necessary for LEC-induced Notch3 induction and coincident ß1-integrin activation. Moreover, MMP14 and Notch3 were required for LEC-mediated metastasis of zebrafish xenografts. This study uncovers a unique mechanism whereby LEC contact promotes melanoma metastasis by inducing a reversible switch from 3D growth to invasively sprouting cell phenotype.


Assuntos
Neoplasias da Mama/patologia , Endotélio Linfático/patologia , Integrina beta1/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Metaloproteinase 14 da Matriz/metabolismo , Receptor Notch3/metabolismo , Animais , Apoptose , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotélio Linfático/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Camundongos , Camundongos SCID , Invasividade Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
4.
Bio Protoc ; 8(18): e3027, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395813

RESUMO

Xenograft models, and in particular the mouse xenograft model, where human cancer cells are transplanted into immunocompromised mice, have been used extensively in cancer studies. Although these models have contributed enormously to our understanding of cancer biology, the zebrafish xenograft model offers several advantages over the mouse model. Zebrafish embryos can be easily cultured in large quantities, are small and easy to handle, making it possible to use a high number of embryos for each experimental condition. Young embryos lack an efficient immune system. Therefore the injected cancer cells are not rejected, and the formation of primary tumors and micrometastases is rapid. Transparency of the embryos enables imaging of primary tumors and metastases in an intact and living embryo. Here we describe a method where GFP expressing tumor cells are injected into pericardial space of zebrafish embryos. At four days post-injection, the embryos are imaged and the formation of primary tumor and distant micrometastases are analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA