RESUMO
Sepsis is one of the major complications of surgery resulting in high morbidity and mortality, but there are no specific therapies for sepsis-induced organ dysfunction. Data obtained under Gene Expression Omnibus accession GSE131761 were re-analyzed and showed an increased gene expression of Janus Kinase 2 (JAK2) and Signal Transducer and Activator of Transcription 3 (STAT3) in the whole blood of post-operative septic patients. Based on these results, we hypothesized that JAK/STAT activation may contribute to the pathophysiology of septic shock and, hence, investigated the effects of baricitinib (JAK1/JAK2 inhibitor) on sepsis-induced cardiac dysfunction and multiple-organ failure (MOF). In a mouse model of post-trauma sepsis induced by midline laparotomy and cecal ligation and puncture (CLP), 10-week-old male (n=32) and female (n=32) C57BL/6 mice received baricitinib (1mg/kg; i.p.) or vehicle at 1h or 3h post-surgery. Cardiac function was assessed at 24h post-CLP by echocardiography in vivo, and the degree of MOF was analyzed by determination of biomarkers in the serum. The potential mechanism underlying both the cardiac dysfunction and the effect of baricitinib was analyzed by western blot analysis in the heart. Trauma and subsequent sepsis significantly depressed the cardiac function and induced multiple-organ failure, associated with an increase in the activation of JAK2/STAT3, NLRP3 inflammasome and NF- κß pathways in the heart of both male and female animals. These pathways were inhibited by the administration of baricitinib post the onset of sepsis. Moreover, treatment with baricitinib at 1h or 3h post-CLP protected mice from sepsis-induced cardiac injury and multiple-organ failure. Thus, baricitinib may be repurposed for trauma-associated sepsis.
Assuntos
Cardiopatias , Sepse , Humanos , Camundongos , Masculino , Feminino , Animais , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/tratamento farmacológicoRESUMO
OBJECTIVE: The aim of this study was to investigate (a) the potential of the Bruton's tyrosine kinase (BTK) inhibitors acalabrutinib and fenebrutinib to reduce multiple organ dysfunction syndrome (MODS) in acute (short-term and long-term follow-up) hemorrhagic shock (HS) rat models and (b) whether treatment with either acalabrutinib or fenebrutinib attenuates BTK, NF-κB and NLRP3 activation in HS. BACKGROUND: The MODS caused by an excessive systemic inflammatory response following trauma is associated with a high morbidity and mortality. The protein BTK is known to play a role in the activation of the NLRP3 inflammasome, which is a key component of the innate inflammatory response. However, its role in trauma-hemorrhage is unknown. METHODS: Acute HS rat models were performed to determine the influence of acalabrutinib or fenebrutinib on MODS. The activation of BTK, NF-κB and NLRP3 pathways were analyzed by western blot in the kidney. RESULTS: We demonstrated that (a) HS caused organ injury and/or dysfunction and hypotension (post-resuscitation) in rats, while (b) treatment of HS-rats with either acalabrutinib or fenebrutinib attenuated the organ injury and dysfunction in acute HS models and (c) reduced the activation of BTK, NF- kB and NLRP3 pathways in the kidney. CONCLUSION: Our results point to a role of BTK in the pathophysiology of organ injury and dysfunction caused by trauma/hemorrhage and indicate that BTK inhibitors may be repurposed as a potential therapeutic approach for MODS after trauma and/or hemorrhage.
Assuntos
Choque Hemorrágico , Animais , Ratos , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Tirosina Quinase da Agamaglobulinemia , NF-kappa B , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLRRESUMO
Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on activated T cells and its unique ligand, ICOSL, which is expressed on antigen-presenting cells and non-hematopoietic cells, have been extensively investigated in the immune response. Recent findings showed that a soluble recombinant form of ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly investigated in the septic context, a few studies have reported that septic patients have reduced ICOS expression in whole blood and increased serum levels of osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential protective effects of its immunomodulation by administering ICOS-Fc in a murine model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS-/-, ICOSL-/- and OPN-/- mice. One hour after the surgical procedure, either CLP or Sham (control) mice were randomly assigned to receive once ICOS-Fc, F119SICOS-Fc, a mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and plasma were collected 24 h after surgery for analyses. When compared to Sham mice, WT mice that underwent CLP developed within 24 h a higher clinical severity score, a reduced body temperature, an increase in plasma cytokines (TNF-α, IL-1ß, IL-6, IFN-γ and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea) dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these abnormalities caused by sepsis. Similar beneficial effects were not seen in CLP-mice treated with F119SICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome. ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the protective effect was lost in septic knockout mice for the ICOS or ICOSL genes, whereas it was maintained in OPN knockout mice. Collectively, our data show the beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in counteracting the sepsis-induced inflammation and organ dysfunction.
Assuntos
Osteopontina , Sepse , Animais , Masculino , Camundongos , Creatinina , Citocinas/metabolismo , Proteínas de Checkpoint Imunológico , Imunidade , Imunomodulação , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Inflamassomos , Inflamação , Interleucina-10 , Interleucina-6 , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases p38 Ativadas por Mitógeno , Sepse/tratamento farmacológico , Fator de Necrose Tumoral alfa , UreiaRESUMO
Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis. In this study we described the initial characterization and effects of a novel small molecule AQP9 inhibitor, RG100204, in a cecal ligation and puncture (CLP) induced model of polymicrobial infection. In vitro, RG100204 blocked mouse AQP9 H2O2 permeability in an ectopic CHO cell expression system and abolished the LPS induced increase in superoxide anion and nitric oxide in FaO hepatoma cells. Pre-treatment of CLP-mice with RG100204 (25 mg/kg p.o. before CLP and then again at 8 h after CLP) attenuated the hypothermia, cardiac dysfunction (systolic and diastolic), renal dysfunction and hepatocellular injury caused by CLP-induced sepsis. Post-treatment of CLP-mice with RG100204 also attenuated the cardiac dysfunction (systolic and diastolic), the renal dysfunction caused by CLP-induced sepsis, but did not significantly reduce the liver injury or hypothermia. The most striking finding was that oral administration of RG100204 as late as 3 h after the onset of polymicrobial sepsis attenuated the cardiac and renal dysfunction caused by severe sepsis. Immunoblot quantification demonstrated that RG100204 reduced activation of the NLRP3 inflammasome pathway. Moreover, myeloperoxidase activity in RG100204 treated lung tissue was reduced. Together these results indicate that AQP9 may be a novel drug target in polymicrobial sepsis.
Assuntos
Aquaporinas , Cardiomiopatias , Cardiopatias , Hipotermia , Nefropatias , Sepse , Animais , Aquaporinas/genética , Peróxido de Hidrogênio/metabolismo , Camundongos , Insuficiência de Múltiplos Órgãos , Sepse/complicações , Sepse/tratamento farmacológicoRESUMO
Objective: The aim of this study was to investigate (a) macrophage migration inhibitory factor (MIF) levels in polytrauma patients and rats after haemorrhagic shock (HS), (b) the potential of the MIF inhibitor ISO-1 to reduce multiple organ dysfunction syndrome (MODS) in acute (short-term and long-term follow-up) HS rat models and (c) whether treatment with ISO-1 attenuates NF-κB and NLRP3 activation in HS. Background: The MODS caused by an excessive systemic inflammatory response following trauma is associated with a high morbidity and mortality. MIF is a pleiotropic cytokine which can modulate the inflammatory response, however, its role in trauma is unknown. Methods: The MIF levels in plasma of polytrauma patients and serum of rats with HS were measured by ELISA. Acute HS rat models were performed to determine the influence of ISO-1 on MODS. The activation of NF-κB and NLRP3 pathways were analysed by western blot in the kidney and liver. Results: We demonstrated that (a) MIF levels are increased in polytrauma patients on arrival to the emergency room and in rats after HS, (b) HS caused organ injury and/or dysfunction and hypotension (post-resuscitation) in rats, while (c) treatment of HS-rats with ISO-1 attenuated the organ injury and dysfunction in acute HS models and (d) reduced the activation of NF-κB and NLRP3 pathways in the kidney and liver. Conclusion: Our results point to a role of MIF in the pathophysiology of trauma-induced organ injury and dysfunction and indicate that MIF inhibitors may be used as a potential therapeutic approach for MODS after trauma and/or haemorrhage.
Assuntos
Fatores Inibidores da Migração de Macrófagos , Traumatismo Múltiplo , Choque Hemorrágico , Animais , Humanos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Traumatismo Múltiplo/complicações , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológicoRESUMO
Sepsis and septic shock are associated with high mortality and are considered one of the major public health concerns. The onset of sepsis is known as a hyper-inflammatory state that contributes to organ failure and mortality. Recent findings suggest a potential role of two non-receptor protein tyrosine kinases, namely Focal adhesion kinase (FAK) and Proline-rich tyrosine kinase 2 (Pyk2), in the inflammation associated with endometriosis, cancer, atherosclerosis and asthma. Here we investigate the role of FAK-Pyk2 in the pathogenesis of sepsis and the potential beneficial effects of the pharmacological modulation of this pathway by administering the potent reversible dual inhibitor of FAK and Pyk2, PF562271 (PF271) in a murine model of cecal ligation and puncture (CLP)-induced sepsis. Five-month-old male C57BL/6 mice underwent CLP or Sham surgery and one hour after the surgical procedure, mice were randomly assigned to receive PF271 (25 mg/kg, s.c.) or vehicle. Twenty-four hours after surgery, organs and plasma were collected for analyses. In another group of mice, survival rate was assessed every 12 h over the subsequent 5 days. Experimental sepsis led to a systemic cytokine storm resulting in the formation of excessive amounts of both pro-inflammatory cytokines (TNF-α, IL-1ß, IL-17 and IL-6) and the anti-inflammatory cytokine IL-10. The systemic inflammatory response was accompanied by high plasma levels of ALT, AST (liver injury), creatinine, (renal dysfunction) and lactate, as well as a high, clinical severity score. All parameters were attenuated following PF271 administration. Experimental sepsis induced an overactivation of FAK and Pyk2 in liver and kidney, which was associated to p38 MAPK activation, leading to increased expression/activation of several pro-inflammatory markers, including the NLRP3 inflammasome complex, the adhesion molecules ICAM-1, VCAM-1 and E-selectin and the enzyme NOS-2 and myeloperoxidase. Treatment with PF271 inhibited FAK-Pyk2 activation, thus blunting the inflammatory abnormalities orchestrated by sepsis. Finally, PF271 significantly prolonged the survival of mice subjected to CLP-sepsis. Taken together, our data show for the first time that the FAK-Pyk2 pathway contributes to sepsis-induced inflammation and organ injury/dysfunction and that the pharmacological modulation of this pathway may represents a new strategy for the treatment of sepsis.
Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/antagonistas & inibidores , Inflamação/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/fisiopatologia , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/fisiopatologia , Distribuição Aleatória , Sepse , Taxa de SobrevidaRESUMO
Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 µM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 µM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.
Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Ticagrelor/uso terapêutico , Animais , Humanos , Masculino , Oxirredução , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Ratos Wistar , Ticagrelor/farmacologiaRESUMO
OBJECTIVE: Recent evidence suggests the substantial pathogenic role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in the development of low-grade chronic inflammatory response, known as "metaflammation," which contributes to obesity and type 2 diabetes. In this study, we investigated the effects of the JAK1/2 inhibitor baricitinib, recently approved for the treatment of rheumatoid arthritis, in a murine high-fat-high sugar diet model. METHODS: Male C57BL/6 mice were fed with a control normal diet (ND) or a high-fat-high sugar diet (HD) for 22 weeks. A sub-group of HD fed mice was treated with baricitinib (10 mg/kg die, p.o.) for the last 16 weeks (HD + Bar). RESULTS: HD feeding resulted in obesity, insulin-resistance, hypercholesterolemia and alterations in gut microbial composition. The metabolic abnormalities were dramatically reduced by chronic baricitinib administration. Treatment of HD mice with baricitinib did not change the diet-induced alterations in the gut, but restored insulin signaling in the liver and skeletal muscle, resulting in improvements of diet-induced myosteatosis, mesangial expansion and associated proteinuria. The skeletal muscle and renal protection were due to inhibition of the local JAK2-STAT2 pathway by baricitinib. We also demonstrated that restored tissue levels of JAK2-STAT2 activity were associated with a significant reduction in cytokine levels in the blood. CONCLUSIONS: In summary, our data suggest that the JAK2-STAT2 pathway may represent a novel candidate for the treatment of diet-related metabolic derangements, with the potential for EMA- and FDA-approved JAK inhibitors to be repurposed for the treatment of type 2 diabetes and/or its complications.
Assuntos
Azetidinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Inibidores de Janus Quinases/farmacologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Insulina/metabolismo , Janus Quinase 2/metabolismo , Masculino , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/tratamento farmacológico , Camundongos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Candesartan cilexetil (CC) is a poorly soluble antihypertensive drug with in vivo absorption limited by its low aqueous solubility. Aiming to generate CC supersaturation as strategy to improve its absorption and bioavailability, amorphous solid dispersions (ASDs) of CC with hydroxypropylmethylcellulose acetate succinate type M (HPMCAS M) were developed and evaluated by in vitro and in vivo techniques. The ASDs were characterized by several solid-state techniques and evaluated regarding the supersaturation generation and maintenance under non-sink conditions in biorelevant medium. Stability studies at different storage conditions and in vivo pharmacodynamics studies were performed for the best formulation. The ASD developed presented appropriate drug amorphization, confirmed by solid state characterization, and CC apparent solubility increases around 85 times when compared to the pure crystalline drug. Supersaturation was maintained for up to 24 h in biorelevant medium. The in vivo pharmacodynamics studies revealed that ASD of CC with the polymer HPMCAS M presented an onset of action about four times faster when compared to the pure crystalline drug. The CC-HPMCAS ASD were successfully developed and demonstrated good physical stability under different storage conditions as well as promising results that indicated the ASD potential for improvement of CC biopharmaceutical properties.
Assuntos
Benzimidazóis/química , Compostos de Bifenilo/química , Tetrazóis/química , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Compostos de Bifenilo/farmacocinética , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Metilcelulose/análogos & derivados , Metilcelulose/química , Polímeros/química , Ratos , Ratos Wistar , Solubilidade/efeitos dos fármacos , Tetrazóis/farmacocinéticaRESUMO
OBJECTIVE: Periodontitis is associated with endothelial dysfunction, which is clinically characterized by a reduction in endothelium-dependent relaxation. However, we have previously shown that impairment in endothelium-dependent relaxation is transient. Therefore, we evaluated which mediators are involved in endothelium-dependent relaxation recovery. MATERIAL AND METHODS: Rats were subjected to ligature-induced experimental periodontitis. Twenty-one days after the procedure, the animals were prepared for blood pressure recording, and the responses to acetylcholine or sodium nitroprusside were obtained before and 30 minutes after injection of a nitric oxide synthase inhibitor (L-NAME), cyclooxygenase inhibitor (Indomethacin, SC-550 and NS- 398), or calcium-dependent potassium channel blockers (apamin plus TRAM- 34). The maxilla and mandible were removed for bone loss analysis. Blood and gingivae were obtained for C-reactive protein (CRP) and myeloperoxidase (MPO) measurement, respectively. RESULTS: Experimental periodontitis induces bone loss and an increase in the gingival MPO and plasmatic CRP. Periodontitis also reduced endothelium-dependent vasodilation, a hallmark of endothelial dysfunction, 14 days after the procedure. However, the response was restored at day 21. We found that endothelium-dependent vasodilation at day 21 in ligature animals was mediated, at least in part, by the activation of endothelial calcium-activated potassium channels. CONCLUSIONS: Periodontitis induces impairment in endothelial-dependent relaxation; this impairment recovers, even in the presence of periodontitis. The recovery is mediated by the activation of endothelial calcium-activated potassium channels in ligature animals. Although important for maintenance of vascular homeostasis, this effect could mask the lack of NO, which has other beneficial properties.
Assuntos
Óxido Nítrico/metabolismo , Periodontite/metabolismo , Periodontite/fisiopatologia , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/fisiopatologia , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Proteína C-Reativa/análise , Inibidores de Ciclo-Oxigenase/farmacologia , Ligadura , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Nitroprussiato/farmacologia , Peroxidase/análise , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Distribuição Aleatória , Ratos Wistar , Fatores de Tempo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologiaAssuntos
Edema/etiologia , Inflamação/etiologia , Periodontite/complicações , Receptor B1 da Bradicinina/imunologia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/patologia , Animais , Chondrus , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/imunologia , Edema/patologia , Extremidades/patologia , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/imunologia , Masculino , Periodontite/imunologia , Periodontite/patologia , Ratos , Ratos Wistar , Receptor B1 da Bradicinina/análise , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Abstract Objective: Periodontitis is associated with endothelial dysfunction, which is clinically characterized by a reduction in endothelium-dependent relaxation. However, we have previously shown that impairment in endothelium-dependent relaxation is transient. Therefore, we evaluated which mediators are involved in endothelium-dependent relaxation recovery. Material and methods: Rats were subjected to ligature-induced experimental periodontitis. Twenty-one days after the procedure, the animals were prepared for blood pressure recording, and the responses to acetylcholine or sodium nitroprusside were obtained before and 30 minutes after injection of a nitric oxide synthase inhibitor (L-NAME), cyclooxygenase inhibitor (Indomethacin, SC-550 and NS- 398), or calcium-dependent potassium channel blockers (apamin plus TRAM- 34). The maxilla and mandible were removed for bone loss analysis. Blood and gingivae were obtained for C-reactive protein (CRP) and myeloperoxidase (MPO) measurement, respectively. Results: Experimental periodontitis induces bone loss and an increase in the gingival MPO and plasmatic CRP. Periodontitis also reduced endothelium-dependent vasodilation, a hallmark of endothelial dysfunction, 14 days after the procedure. However, the response was restored at day 21. We found that endothelium-dependent vasodilation at day 21 in ligature animals was mediated, at least in part, by the activation of endothelial calcium-activated potassium channels. Conclusions: Periodontitis induces impairment in endothelial-dependent relaxation; this impairment recovers, even in the presence of periodontitis. The recovery is mediated by the activation of endothelial calcium-activated potassium channels in ligature animals. Although important for maintenance of vascular homeostasis, this effect could mask the lack of NO, which has other beneficial properties.