Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Life (Basel) ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792663

RESUMO

Epilactose is a disaccharide composed of galactose and mannose, and it is currently considered an "under development" prebiotic. In this study, we described the prebiotic potential of epilactose by in vitro fermentation using human fecal inocula from individuals following a Mediterranean diet (DM) or a Vegan diet (DV). The prebiotic effect of epilactose was also compared with lactulose and raffinose, and interesting correlations were established between metabolites and microbiota modulation. The production of several metabolites (lactate, short-chain fatty acids, and gases) confirmed the prebiotic properties of epilactose. For both donors, the microbiota analysis showed that epilactose significantly stimulated the butyrate-producing bacteria, suggesting that its prebiotic effect could be independent of the donor diet. Butyrate is one of the current golden metabolites due to its benefits for the gut and systemic health. In the presence of epilactose, the production of butyrate was 70- and 63-fold higher for the DM donor, when compared to lactulose and raffinose, respectively. For the DV donor, an increase of 29- and 89-fold in the butyrate production was obtained when compared to lactulose and raffinose, respectively. In conclusion, this study suggests that epilactose holds potential functional properties for human health, especially towards the modulation of butyrate-producing strains.

3.
Biotechnol Biofuels Bioprod ; 16(1): 24, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788587

RESUMO

BACKGROUND: Developing new bioprocesses to produce chemicals and fuels with reduced production costs will greatly facilitate the replacement of fossil-based raw materials. In most fermentation bioprocesses, the feedstock usually represents the highest cost, which becomes the target for cost reduction. Additionally, the biorefinery concept advocates revenue growth from the production of several compounds using the same feedstock. Taken together, the production of bio commodities from low-cost gas streams containing CO, CO2, and H2, obtained from the gasification of any carbon-containing waste streams or off-gases from heavy industry (steel mills, processing plants, or refineries), embodies an opportunity for affordable and renewable chemical production. To achieve this, by studying non-model autotrophic acetogens, current limitations concerning low growth rates, toxicity by gas streams, and low productivity may be overcome. The Acetobacterium wieringae strain JM is a novel autotrophic acetogen that is capable of producing acetate and ethanol. It exhibits faster growth rates on various gaseous compounds, including carbon monoxide, compared to other Acetobacterium species, making it potentially useful for industrial applications. The species A. wieringae has not been genetically modified, therefore developing a genetic engineering method is important for expanding its product portfolio from gas fermentation and overall improving the characteristics of this acetogen for industrial demands. RESULTS: This work reports the development and optimization of an electrotransformation protocol for A. wieringae strain JM, which can also be used in A. wieringae DSM 1911, and A. woodii DSM 1030. We also show the functionality of the thiamphenicol resistance marker, catP, and the functionality of the origins of replication pBP1, pCB102, pCD6, and pIM13 in all tested Acetobacterium strains, with transformation efficiencies of up to 2.0 × 103 CFU/µgDNA. Key factors affecting electrotransformation efficiency include OD600 of cell harvesting, pH of resuspension buffer, the field strength of the electric pulse, and plasmid amount. Using this method, the acetone production operon from Clostridium acetobutylicum was efficiently introduced in all tested Acetobacterium spp., leading to non-native biochemical acetone production via plasmid-based expression. CONCLUSIONS: A. wieringae can be electrotransformed at high efficiency using different plasmids with different replication origins. The electrotransformation procedure and tools reported here unlock the genetic and metabolic manipulation of the biotechnologically relevant A. wieringae strains. For the first time, non-native acetone production is shown in A. wieringae.

4.
Food Chem ; 391: 133231, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613528

RESUMO

This study explores the structural characterization, antioxidant and prebiotic activities of hydrolysates containing xylooligosaccharides (XOS) produced by different strategies: direct fermentation of beechwood xylan (FermBX) and enzymatic treatment of beechwood (EnzBX) and rice husk (EnzRH) xylans. EnzBX and EnzRH showed XOS with a backbone of (1 â†’ 4)-linked-xylopyranosyl residues and branches of arabinose, galactose, and uronic acids. FermBX presented the highest content of total phenolic compounds (14 mg GAE/g) and flavonoids (0.6 mg QE/g), which may contribute to its antioxidant capacity -39.1 µmol TE/g (DPPH), 45.7 µmol TE/g (ABTS), and 79.9 µmol Fe II/g (FRAP). The fermentation of hydrolysates decreased the abundance of microorganisms associated with intestinal diseases from Eubacteriales, Desulfovibrionales and Methanobacteriales orders, while stimulating the growth of organisms belonging to Bacteroides, Megamonas and Limosilactobacillus genera. The production of short-chain fatty acids, ammonia, and CO2 suggested the prebiotic potential. In conclusion, hydrolysates without previous purification and obtained from non-chemical approaches demonstrated promising biological activities for further food applications.


Assuntos
Antioxidantes , Prebióticos , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/química
5.
Appl Environ Microbiol ; 87(14): e0283920, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33990298

RESUMO

Gas fermentation is a promising way to convert CO-rich gases to chemicals. We studied the use of synthetic cocultures composed of carboxydotrophic and propionigenic bacteria to convert CO to propionate. So far, isolated carboxydotrophs cannot directly ferment CO to propionate, and therefore, this cocultivation approach was investigated. Four distinct synthetic cocultures were constructed, consisting of Acetobacterium wieringae (DSM 1911T) and Pelobacter propionicus (DSM 2379T), Ac. wieringae (DSM 1911T) and Anaerotignum neopropionicum (DSM 3847T), Ac. wieringae strain JM and P. propionicus (DSM 2379T), and Ac. wieringae strain JM and An. neopropionicum (DSM 3847T). Propionate was produced by all the cocultures, with the highest titer (∼24 mM) being measured in the coculture composed of Ac. wieringae strain JM and An. neopropionicum, which also produced isovalerate (∼4 mM), butyrate (∼1 mM), and isobutyrate (0.3 mM). This coculture was further studied using proteogenomics. As expected, enzymes involved in the Wood-Ljungdahl pathway in Ac. wieringae strain JM, which are responsible for the conversion of CO to ethanol and acetate, were detected; the proteome of An. neopropionicum confirmed the conversion of ethanol to propionate via the acrylate pathway. In addition, proteins related to amino acid metabolism and stress response were highly abundant during cocultivation, which raises the hypothesis that amino acids are exchanged by the two microorganisms, accompanied by isovalerate and isobutyrate production. This highlights the importance of explicitly looking at fortuitous microbial interactions during cocultivation to fully understand coculture behavior. IMPORTANCE Syngas fermentation has great potential for the sustainable production of chemicals from wastes (via prior gasification) and flue gases containing CO/CO2. Research efforts need to be directed toward expanding the product portfolio of gas fermentation, which is currently limited to mainly acetate and ethanol. This study provides the basis for a microbial process to produce propionate from CO using synthetic cocultures composed of acetogenic and propionigenic bacteria and elucidates the metabolic pathways involved. Furthermore, based on proteomics results, we hypothesize that the two bacterial species engage in an interaction that results in amino acid exchange, which subsequently promotes isovalerate and isobutyrate production. These findings provide a new understanding of gas fermentation and a coculturing strategy for expanding the product spectrum of microbial conversion of CO/CO2.


Assuntos
Acetobacterium/metabolismo , Monóxido de Carbono/metabolismo , Deltaproteobacteria/metabolismo , Propionatos/metabolismo , Acetobacterium/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Deltaproteobacteria/efeitos dos fármacos , Fermentação , Proteoma/metabolismo , Acetato de Sódio/farmacologia
6.
Front Microbiol ; 11: 588468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304333

RESUMO

A syngas-degrading enrichment culture, culture T-Syn, was dominated by a bacterium closely related to Desulfofundulus australicus strain AB33T (98% 16S rRNA gene sequence identity). Culture T-Syn could convert high CO concentrations (from pCO ≈ 34 kPa to pCO ≈ 170 kPa), both in the absence and in the presence of sulfate as external electron acceptor. The products formed from CO conversion were H2 and acetate. With sulfate, a lower H2/acetate ratio was observed in the product profile, but CO conversion rates were similar to those in the absence of sulfate. The ability of D. australicus strain AB33T to use CO was also investigated. D. australicus strain AB33T uses up to 40% CO (pCO ≈ 68 kPa) with sulfate and up to 20% CO (pCO ≈ 34 kPa) without sulfate. Comparison of the metagenome-assembled genome (MAG) of the Desulfofundulus sp. from T-Syn culture with the genome of D. australicus strain AB33T revealed high similarity, with an ANI value of 99% and only 32 unique genes in the genome of the Desulfofundulus sp. T-Syn. So far, only Desulfotomaculum nigrificans strain CO-1-SRB had been described to grow with CO with and without sulfate. This work further shows the carboxydotrophic potential of Desulfofundulus genus for CO conversion, both in sulfate-rich and low-sulfate environments.

7.
Front Microbiol ; 11: 58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082285

RESUMO

Syngas is a substrate for the anaerobic bioproduction of fuels and valuable chemicals. In this study, anaerobic sludge was used for microbial enrichments with synthetic syngas and acetate as main substrates. The objectives of this study were to identify microbial networks (in enrichment cultures) for the conversion of syngas to added-value products, and to isolate robust, non-fastidious carboxydotrophs. Enrichment cultures produced methane and propionate, this last one an unusual product from syngas fermentation. A bacterium closely related to Acetobacterium wieringae was identified as most prevalent (87% relative abundance) in the enrichments. Methanospirillum sp. and propionate-producing bacteria clustering within the genera Anaerotignum and Pelobacter were also found. Further on, strain JM, was isolated and was found to be 99% identical (16S rRNA gene) to A. wieringae DSM 1911T. Digital DNA-DNA hybridization (dDDH) value between the genomes of strain JM and A. wieringae was 77.1%, indicating that strain JM is a new strain of A. wieringae. Strain JM can grow on carbon monoxide (100% CO, total pressure 170 kPa) without yeast extract or formate, producing mainly acetate. Remarkably, conversion of CO by strain JM showed shorter lag phase than in cultures of A. wieringae DSM 1911T, and about four times higher amount of CO was consumed in 7 days. Genome analysis suggests that strain JM uses the Wood-Ljungdahl pathway for the conversion of one carbon compounds (CO, formate, CO2/H2). Genes encoding bifurcational enzyme complexes with similarity to the bifurcational formate dehydrogenase (Fdh) of Clostridium autoethanogenum are present, and possibly relate to the higher tolerance to CO of strain JM compared to other Acetobacterium species. A. wieringae DSM 1911T grew on CO in medium containing 1 mM formate.

8.
Front Microbiol ; 11: 539604, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391191

RESUMO

Microbial communities with the ability to convert long-chain fatty acids (LCFA) coupled to sulfate reduction can be important in the removal of these compounds from wastewater. In this work, an enrichment culture, able to oxidize the long-chain fatty acid palmitate (C16 : 0) coupled to sulfate reduction, was obtained from anaerobic granular sludge. Microscopic analysis of this culture, designated HP culture, revealed that it was mainly composed of one morphotype with a typical collar-like cell wall invagination, a distinct morphological feature of the Desulfomonile genus. 16S rRNA gene amplicon and metagenome-assembled genome (MAG) indeed confirmed that the abundant phylotype in HP culture belong to Desulfomonile genus [ca. 92% 16S rRNA gene sequences closely related to Desulfomonile spp.; and ca. 82% whole genome shotgun (WGS)]. Based on similar cell morphology and average nucleotide identity (ANI) (77%) between the Desulfomonile sp. in HP culture and the type strain Desulfomonile tiedjei strain DCB-1T, we propose a novel species designated as "Candidatus Desulfomonile palmitatoxidans." This bacterium shares 94.3 and 93.6% 16S rRNA gene identity with Desulfomonile limimaris strain DCB-MT and D. tiedjei strain DCB-1T, respectively. Based on sequence abundance of Desulfomonile-morphotype in HP culture, its predominance in the microscopic observations, and presence of several genes coding for enzymes involved in LCFA degradation, the proposed species "Ca. Desulfomonile palmitatoxidans" most probably plays an important role in palmitate degradation in HP culture. Analysis of the growth of HP culture and D. tiedjei strain DCB-1T with short- (butyrate), medium- (caprylate) and long-chain fatty acids (palmitate, stearate, and oleate) showed that both cultures degraded all fatty acids coupled to sulfate reduction, except oleate that was only utilized by HP culture. In the absence of sulfate, neither HP culture, nor D. tiedjei strain DCB-1T degraded palmitate when incubated with Methanobacterium formicicum as a possible methanogenic syntrophic partner. Unlike D. tiedjei strain DCB-1T, "Ca. Desulfomonile palmitatoxidans" lacks reductive dehalogenase genes in its genome, and HP culture was not able to grow by organohalide respiration. An emended description of the genus Desulfomonile is proposed. Our study reveals an unrecognized LCFA degradation feature of the Desulfomonile genus.

9.
Carbohydr Polym ; 229: 115460, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826467

RESUMO

Xylooligosaccharides (XOS) are emergent prebiotics exhibiting high potential as food ingredients. In this work, in vitro studies were performed using human fecal inocula from two healthy donors (D 1 and D2) to evaluate the prebiotic effect of commercial lactulose and XOS produced in a single-step by recombinant Bacillus subtilis 3610. The fermentation of lactulose led to the highest production of lactate (D1: 33.7 ±â€¯0.5 mM; D2:19.7 ±â€¯0.3 mM) and acetate (D1: 77.5 ±â€¯0.6 mM; D2: 81.0 ±â€¯0.7 mM), while XOS led to the highest production of butyrate (D1: 9.0 ±â€¯0.6 mM; D2: 10.5 ±â€¯0.8 mM) and CO2 (D1: 8.92 ±â€¯0.02 mM; D2: 11.4 ±â€¯0.3 mM). Microbiota analysis showed a significant decrease in the relative abundance of Proteobacteria for both substrates and an increase in Bifidobacterium and Lactobacillus for lactulose, and Bacteroides for XOS.


Assuntos
Bacillus subtilis/química , Microbioma Gastrointestinal/efeitos dos fármacos , Glucuronatos/farmacologia , Oligossacarídeos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Prebióticos , Adulto , Amônia/metabolismo , Dióxido de Carbono/metabolismo , Ácidos Graxos Voláteis/biossíntese , Fezes/microbiologia , Feminino , Humanos , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/biossíntese , Lactulose/farmacologia , Masculino
10.
Microb Biotechnol ; 11(4): 639-646, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29160026

RESUMO

The substitution of natural gas by renewable biomethane is an interesting option to reduce global carbon footprint. Syngas fermentation has potential in this context, as a diverse range of low-biodegradable materials that can be used. In this study, anaerobic sludge acclimatized to syngas in a multi-orifice baffled bioreactor (MOBB) was used to start enrichments with CO. The main goals were to identify the key players in CO conversion and evaluate potential interspecies metabolic interactions conferring robustness to the process. Anaerobic sludge incubated with 0.7 × 105  Pa CO produced methane and acetate. When the antibiotics vancomycin and/or erythromycin were added, no methane was produced, indicating that direct methanogenesis from CO did not occur. Acetobacterium and Sporomusa were the predominant bacterial species in CO-converting enrichments, together with methanogens from the genera Methanobacterium and Methanospirillum. Subsequently, a highly enriched culture mainly composed of a Sporomusa sp. was obtained that could convert up to 1.7 × 105  Pa CO to hydrogen and acetate. These results attest the role of Sporomusa species in the enrichment as primary CO utilizers and show their importance for methane production as conveyers of hydrogen to methanogens present in the culture.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Gases/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Acetatos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biotransformação , Monóxido de Carbono/metabolismo , Fermentação , Esgotos/microbiologia
11.
Front Microbiol ; 7: 1330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27621723

RESUMO

An anaerobic thermophilic strain (strain PCO) was isolated from a syngas-converting enrichment culture. Syngas components cannot be used by strain PCO, but the new strain is very tolerant to carbon monoxide (pCO = 1.7 × 10(5) Pa, 100% CO). 16S rRNA gene analysis and DNA-DNA hybridization revealed that strain PCO is a strain of Thermoanaerobacter thermohydrosulfuricus. The physiology of strain PCO and other Thermoanaerobacter species was compared, focusing on their tolerance to carbon monoxide. T. thermohydrosulfuricus, T. brockii subsp. finnii, T. pseudethanolicus, and T. wiegelii were exposed to increased CO concentrations in the headspace, while growth, glucose consumption and product formation were monitored. Remarkably, glucose conversion rates by Thermoanaerobacter species were not affected by CO. All the tested strains fermented glucose to mainly lactate, ethanol, acetate, and hydrogen, but final product concentrations differed. In the presence of CO, ethanol production was generally less affected, but H2 production decreased with increasing CO partial pressure. This study highlights the CO resistance of Thermoanaerobacter species.

12.
Stand Genomic Sci ; 9(3): 655-75, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197452

RESUMO

Desulfotomaculum nigrificans and D. carboxydivorans are moderately thermophilic members of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. They are phylogenetically very closely related and belong to 'subgroup a' of the Desulfotomaculum cluster 1. D. nigrificans and D. carboxydivorans have a similar growth substrate spectrum; they can grow with glucose and fructose as electron donors in the presence of sulfate. Additionally, both species are able to ferment fructose, although fermentation of glucose is only reported for D. carboxydivorans. D. nigrificans is able to grow with 20% carbon monoxide (CO) coupled to sulfate reduction, while D. carboxydivorans can grow at 100% CO with and without sulfate. Hydrogen is produced during growth with CO by D. carboxydivorans. Here we present a summary of the features of D. nigrificans and D. carboxydivorans together with the description of the complete genome sequencing and annotation of both strains. Moreover, we compared the genomes of both strains to reveal their differences. This comparison led us to propose a reclassification of D. carboxydivorans as a later heterotypic synonym of D. nigrificans.

13.
FEMS Microbiol Ecol ; 86(3): 590-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23899025

RESUMO

Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals.


Assuntos
Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Bactérias Anaeróbias/crescimento & desenvolvimento , Monóxido de Carbono/metabolismo , Metano/metabolismo , Dados de Sequência Molecular , Esgotos/química , Espanha , Gerenciamento de Resíduos
14.
Bioresour Technol ; 101(24): 9577-86, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20709532

RESUMO

In the present study, two granular systems were compared in terms of hydrogen production rate, stability and bacterial diversity under extreme thermophilic conditions (70 degrees C). Two EGSB reactors were individually inoculated with heat treated methanogenic granules (HTG) and HTG amended with enrichment culture with high capacity of hydrogen production (engineered heat treated methanogenic granules - EHTG), respectively. The reactor inoculated with EHTG (R(EHTG)) attained a maximum production rate of 2.7l H(2)l(-1)day(-1) in steady state. In comparison, the R(HTG) containing the HTG granules was very unstable, with low hydrogen productions and only two peaks of hydrogen (0.8 and 1.5l H(2)l(-1)day(-1)). The presence of active hydrogen producers in the R(EHTG) system during the reactor start-up resulted in the development of an efficient H(2)-producing bacterial community. The results showed that "engineered inocula" where known hydrogen producers are co-inoculated with HTG is an efficient way to start up biohydrogen-producing reactors.


Assuntos
Biocombustíveis/análise , Biotecnologia/métodos , Temperatura Alta , Hidrogênio/metabolismo , Metano/metabolismo , Arabinose/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Sequência de Bases , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos , Eletroforese em Gel de Gradiente Desnaturante , Fermentação , Glucose/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Solubilidade , Fatores de Tempo
15.
Environ Sci Technol ; 43(8): 2931-6, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19475973

RESUMO

Mineralization of a synthetic effluent containing 50% COD as oleic acid was achieved in a continuous anaerobic reactor at organic loading rates up to 21 kg COD m(-3) day(-1), HRT of 9 h, attaining 99% of COD removal efficiency and a methane yield higher than 70%. A maximum specific methane production rate of 1170 +/- 170 mg COD-CH4 g VS(-1) day(-1) was measured during the reactor's operation. A start-up strategy combining feeding phases and batch degradation phases was applied to promote the development of an anaerobic community efficient for long chain fatty acids (LCFA) mineralization. Through the start-up period, the methane yield increased gradually from 67% to 91%, and LCFA accumulated onto the sludge only during the first 60 days of operation. For the first time, it is demonstrated that a step feeding start-up is required to produce a specialized and efficient anaerobic community for continuous high rate anaerobic treatment of LCFA-rich wastewater.


Assuntos
Anaerobiose , Ácido Oleico/metabolismo , Poluentes da Água/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Metano/metabolismo
16.
Environ Microbiol ; 11(1): 68-80, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18783383

RESUMO

Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C(18:1), unsaturated LCFA) or palmitate (C(16:0), saturated LCFA), was studied by denaturing gradient gel electrophoresis (DGGE) profiling of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments. These enrichment cultures were started using methanogenic inocula in order to assess the competition between methanogenic communities and sulfate-reducing bacteria. Phylogenetic affiliation of rRNA gene sequences corresponding to predominant DGGE bands demonstrated that members of the Syntrophomonadaceae, together with sulfate reducers mainly belonging to the Desulfovibrionales and Syntrophobacteraceae groups, were present in the sulfate-reducing enrichment cultures. Subculturing of LCFA-degrading methanogenic cultures in the presence of sulfate resulted in the inhibition of methanogenesis and, after several transfers, archaea could no longer be detected by real-time PCR. Competition for hydrogen and acetate was therefore won by sulfate reducers, but acetogenic syntrophic bacteria were the only known LCFA-degrading organisms present after subculturing with sulfate. Principal component analysis of the DGGE profiles from methanogenic and sulfate-reducing oleate- and palmitate-enrichment cultures showed a greater influence of the substrate than the presence or absence of sulfate, indicating that the bacterial communities degrading LCFA in the absence/presence of sulfate are rather stable.


Assuntos
Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Biodiversidade , Ácidos Graxos/metabolismo , Esgotos/microbiologia , Sulfatos/metabolismo , Bactérias Anaeróbias/genética , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida , Genes de RNAr , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA