Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 826: 137730, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485080

RESUMO

PURPOSE: Considering that the combination of dasatinib and quercetin (D + Q) demonstrated a neuroprotective action, as well as that females experience a decline in hormonal levels during aging and this is linked to increased susceptibility to Alzheimer's disease, in this study we evaluated the effect of D + Q on inflammatory and oxidative stress markers and on acetylcholinesterase and Na+, K+-ATPase activities in brain of female mice. METHODS: Female C57BL/6 mice were divided in Control and D (5 mg/kg) + Q (50 mg/kg) treated. Treatment was administered via gavage for three consecutive days every two weeks starting at 30 days of age. The animals were euthanized at 6 months of age and at 14 months of age. RESULTS: Results indicate an increase in reactive species (RS), thiol content and lipid peroxidation followed by a reduction in nitrite levels and superoxide dismutase, catalase and glutathione S-transferase activity in the brain of control animals with age. D+Q protected against age-associated increase in RS and catalase activity reduction. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was reduced at 14 months of age and D+Q prevented this reduction. CONCLUSION: These data demonstrate that D+Q can protect against age-associated neurochemical alterations in the female brain.


Assuntos
Acetilcolinesterase , Senoterapia , Ratos , Feminino , Camundongos , Animais , Catalase/metabolismo , Acetilcolinesterase/metabolismo , Ratos Wistar , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Estresse Oxidativo , Quercetina/farmacologia , Encéfalo/metabolismo , Superóxido Dismutase/metabolismo , Adenosina Trifosfatases
2.
Cell Mol Neurobiol ; 43(1): 283-297, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35031909

RESUMO

Astrocytes play multiple important roles in brain physiology. However, depending on the stimuli, astrocytes may exacerbate inflammatory reactions, contributing to the development and progression of neurological diseases. Therefore, therapies targeting astrocytes represent a promising area for the development of new brain drugs. Thiazolidinones are heterocyclic compounds that have a sulfur and nitrogen atom and a carbonyl group in the ring and represent a class of compounds of great scientific interest due to their pharmacological properties. The aim of this study was to investigate the effect of 3-(3-(diethylamino)propyl)-2-(4-(methylthio)phenyl)thiazolidin-4-one (DS27) on cell proliferation and morphology, oxidative stress parameters, activity of the enzymes ectonucleotidases and acetylcholinesterase (AChE) and interleukin 6 (IL-6) levels in primary astrocyte cultures treated with lipopolysaccharide (LPS), to model neuroinflammation. The astrocyte culture was exposed to LPS (10 µg/ml) for 3 h and subsequently treated with compound DS27 for 24 and 48 h (concentrations ranging to 10-100 µM). LPS induced an increase in astrocyte proliferation, AChE activity, IL-6 levels, oxidative damage, ATP and ADP and a reduction in AMP hydrolysis in rat primary astrocyte cultures. DS27 treatment was effective in reversing these alterations induced by LPS. Our findings demonstrated that DS27 is able to modulate cholinergic and purinergic signaling, redox status, and the levels of pro-inflammatory cytokines in LPS-induced astrocyte damage. These glioprotective effects of DS27 may be very important for improving neuroinflammation, which is associated with many brain diseases.


Assuntos
Astrócitos , Lipopolissacarídeos , Ratos , Animais , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Acetilcolinesterase/metabolismo , Nucleotídeos de Adenina/efeitos adversos , Interleucina-6 , Doenças Neuroinflamatórias , Hidrólise , Estresse Oxidativo , Inflamação/tratamento farmacológico , Células Cultivadas
3.
Neurochem Res ; 47(6): 1541-1552, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35178643

RESUMO

Glioblastoma (GB) is a highly aggressive and invasive brain tumor; its treatment remains palliative. Tannic acid (TA) is a polyphenol widely found in foods and possesses antitumor and neuroprotective activities. This study aimed to investigate the effect of TA on oxidative stress parameters and the activity of ectonucleotidases in the serum, platelets, and lymphocytes and/or in the brain of rats with preclinical GB. Rats with GB were treated intragastrically with TA (50 mg/kg/day) for 15 days or with a vehicle. In the platelets of the animals with glioma, the adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis and the catalase (CAT) activity decreased. Besides, the adenosine diphosphate (ADP) hydrolysis, adenosine (Ado) deamination, and the reactive oxygen species (ROS) and nitrite levels were increased in glioma animals; however, TA reversed ROS and nitrite levels and AMP hydrolysis alterations. In lymphocytes from animals with glioma, the ATP and ADP hydrolysis, as well as Ado deamination were increased; TA treatment countered this increase. In the brain of the animals with glioma, the ROS, nitrite, and thiobarbituric acid reactive substance (TBARS) levels increased and the thiol (SH) levels and CAT and superoxide dismutase (SOD) activities were decreased; TA treatment decreased the ROS and TBARS levels and restored the SOD activity. In the serum of the animals with glioma, the ATP hydrolysis decreased; TA treatment restored this parameter. Additionally, the ROS levels increased and the SH and SOD activity decreased by glioma implant; TA treatment enhanced nitrite levels and reversed SOD activity. Altogether, our results suggest that TA is an important target in the treatment of GB, as it modulates purinergic and redox systems.


Assuntos
Glioblastoma , Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Glioblastoma/tratamento farmacológico , Nitritos , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio , Superóxido Dismutase , Taninos/farmacologia , Taninos/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico
4.
Nutr Neurosci ; 25(4): 857-870, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32954970

RESUMO

OBJECTIVE: Major depressive disorder is a debilitating and recurrent psychiatric disorder. Blueberries have several biological properties, including neuroprotective effects, through antioxidant and anti-inflammatory actions. The aim of this study was to evaluate the effect of blueberry extract on depressive-like behavior and lipopolysaccharide (LPS)-induced neurochemical changes. METHODS: Mice were pretreated with vehicle, fluoxetine (20 mg/kg) or blueberry extract (100 or 200 mg/kg) intragastrically for seven days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, mice were submitted to behavioral tests. Oxidative stress and neuroinflammatory parameters were evaluated in the cerebral cortex, hippocampus, and striatum. RESULTS: Our data showed that blueberry extract or fluoxetine treatment protected against LPS-induced depressive-like behavior in tail suspension and splash tests (P < 0.05), without changes in locomotor activity (P > 0.05). LPS induced an increase in the levels of reactive oxygen species (P < 0.001), nitrite (P < 0.05) and thiobarbituric acid reactive substances (P < 0.01), as well as a reduction in total sulfhydryl content (P < 0.05) and catalase activity (P < 0.05) in brain structures; blueberry extract restored these alterations (P < 0.05). In addition, blueberry extract attenuated the increase in tumor necrosis factor-alpha (TNF-α) levels induced by LPS administration (P < 0.05). CONCLUSION: This study showed that blueberry extract exerted antidepressant-like effects, protected the brain against oxidative damage, and modulated TNF-α levels induced by LPS.


Assuntos
Mirtilos Azuis (Planta) , Transtorno Depressivo Maior , Animais , Comportamento Animal , Mirtilos Azuis (Planta)/química , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico
5.
Metab Brain Dis ; 37(2): 439-449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748129

RESUMO

The aim of this study was to investigate the anticancer potential of blueberry extract (Vaccinium virgatum) against a C6 rat glioma lineage. Cultures of the C6 cells were exposed to blueberry extract at concentrations of 50 to 600 µg/mL for 12, 24, 48, or 72 h and then evaluated for cell viability, proliferation, migration, colony formation and oxidative stress. We also evaluated the effects of blueberry extract on primary rat cortical astrocytes. Our results show that treatment with blueberry extract did not alter the viability or proliferation of normal primary astrocytes but it did significantly reduce the viability in 21.54 % after 48 h and proliferation in 8.59 % after 24 h of C6 cells at 200 µg/mL. We also observed a reduction in the size of the colonies of 29.99 % at 100 µg/mL when compared to the control cells and cell migration was also reduced at 50 µg/mL. After 72 h, there was a reduction in the reactive oxygen species levels ranging from 46.26 to 34.73 %, in addition to a 380.2 % increase in total thiol content. Superoxide dismutase, catalase, and glutathione S-transferase activities were also enhanced when compared to the control. Taken together this data suggests that blueberry extract exerts some selective anticancer activity in C6 glioma cells.


Assuntos
Mirtilos Azuis (Planta) , Glioma , Animais , Antioxidantes/farmacologia , Glioma/tratamento farmacológico , Oxirredução , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA