Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(6): 426-435, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557279

RESUMO

Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish. Following this, the acute effects of major SCFAs on heart rate and vascular tone were measured in anesthetized zebrafish larvae using fecal concentrations of butyrate, acetate, and propionate. Finally, we investigated if coincubation with butyrate may lessen the effects of angiotensin II (ANG II) and phenylephrine (PE) on vascular tone in anesthetized zebrafish larvae. We found that the abundance in Proteobacteria, Firmicutes, and Fusobacteria phyla in the adult zebrafish resembled those reported in rodents and humans. SCFA levels with highest concentration of acetate (27.43 µM), followed by butyrate (2.19 µM) and propionate (1.65 µM) were observed in the fecal samples of adult zebrafish. Immersion in butyrate and acetate produced a ∼20% decrease in heart rate (HR), respectively, with no observed effects of propionate. Butyrate alone also produced an ∼25% decrease in the cross-sectional width of the dorsal aorta (DA) at 60 min (*P < 0.05), suggesting compensatory vasoconstriction, with no effects of either acetate or propionate. In addition, butyrate significantly alleviated the decrease in DA cross-sectional width produced by both ANG II and PE. We demonstrate the potential for zebrafish in investigation of host-microbiota interactions in cardiovascular health.NEW & NOTEWORTHY We highlight the presence of a core gut microbiota and demonstrate in vivo short-chain fatty acid production in adult zebrafish. In addition, we show cardio-beneficial vasoactive and chronotropic properties of butyrate, and chronotropic properties of acetate in anesthetized zebrafish larvae.


Assuntos
Ácidos Graxos Voláteis , Fezes , Microbioma Gastrointestinal , Frequência Cardíaca , Larva , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Fezes/microbiologia , Butiratos/metabolismo , Butiratos/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Bactérias/efeitos dos fármacos , Fenilefrina/farmacologia , Acetatos/farmacologia , Acetatos/metabolismo , RNA Ribossômico 16S/genética
2.
Front Cell Infect Microbiol ; 13: 1325261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292856

RESUMO

Background: Systemic arterial hypertension is linked to a heightened risk of cardiovascular diseases on a global scale. In Mexico, nearly half of adults in vulnerable conditions experience hypertension. Imbalance in the oral and intestinal microbiota composition has been observed in patients with hypertension, documented by a decrease of bacteria producing short-chain fatty acids, which play a critical role in blood pressure regulation. Aim: To examine the cytokines' profile and assess the characteristics of oral and gut microbiota in obesity-related hypertension in Mexican patients. Methods: A cross-sectional, observational, and analytical study was carried out. Twenty-two patients were categorized by their body mass index (BMI) as overweight and obese, and the diagnosis of primary hypertension. DNA from supragingival dental plaque and feces samples was used to carry out 16S rRNA sequencing. Additionally, 13 cytokines were quantified. Results: In the oral microbiota, Kluyvera was found to be significantly enriched in obese compared to overweight patients. Instead, the gut microbiota was dominated by Firmicutes. However, the correlation between certain genera and proinflammatory cytokines was noted. Conclusion: This exploratory study provides insights into the complex relationship between the oral and gut microbiota and their association with systemic inflammation in obesity-related hypertension.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Adulto , Humanos , Sobrepeso/complicações , Sobrepeso/microbiologia , Citocinas , RNA Ribossômico 16S/genética , Estudos Transversais , Obesidade/complicações , Obesidade/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Hipertensão/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA