Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 14(1): 5269, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644014

RESUMO

Despite large sequencing and data sharing efforts, previously characterized pathogenic variants only account for a fraction of Mendelian disease patients, which highlights the need for accurate identification and interpretation of novel variants. In a large Mendelian cohort of 4577 molecularly characterized families, numerous scenarios in which variant identification and interpretation can be challenging are encountered. We describe categories of challenges that cover the phenotype (e.g. novel allelic disorders), pedigree structure (e.g. imprinting disorders masquerading as autosomal recessive phenotypes), positional mapping (e.g. double recombination events abrogating candidate autozygous intervals), gene (e.g. novel gene-disease assertion) and variant (e.g. complex compound inheritance). Overall, we estimate a probability of 34.3% for encountering at least one of these challenges. Importantly, our data show that by only addressing non-sequencing-based challenges, around 71% increase in the diagnostic yield can be expected. Indeed, by applying these lessons to a cohort of 314 cases with negative clinical exome or genome reports, we could identify the likely causal variant in 54.5%. Our work highlights the need to have a thorough approach to undiagnosed diseases by considering a wide range of challenges rather than a narrow focus on sequencing technologies. It is hoped that by sharing this experience, the yield of undiagnosed disease programs globally can be improved.


Assuntos
Exoma , Esperança , Alelos , Causalidade , Disseminação de Informação
2.
Gene ; 879: 147599, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393059

RESUMO

INTRODUCTION: Neurodevelopmental disorders (NDD) are a diverse group of disorders that affect the development of the nervous system. Epilepsy is a common phenotypic aspect of NDD. METHODS: We recruited eight consanguineous families from Pakistan which segregated recessively inherited NDD with epilepsy. Magnetic Resonance imaging (MRI) and Electroencephalogram (EEG) were completed. Exome sequencing was carried out for selected participants from each family. The exome data were analyzed for exonic and splice-site variants that had allele frequencies of less than 0.01 in public databases. RESULTS: Clinical investigations determined that developmental delay, intellectual disability and seizures were manifested by most patients in early childhood. EEG findings were abnormal in the participants of four families. MRI revealed demyelination orcerebral atrophic changes in multiple participants. We identified four novel homozygous variants including nonsense andmissense variants in OCLN, ALDH7A1, IQSEC2 and COL3A1, segregating with the phenotypes in the participants of four families. Previously reported homozygous variants of CNTNAP2, TRIT1 and NARS1 were found in individuals from three families. Clinical utility was observed in directing treatment in case of patients with an ALDH7A1 variant which included pyridoxine administration and enabling accurate counseling about the natural history and recurrence risk. CONCLUSION: Our results add to the clinical and molecular delineation of very rare NDD with epilepsy. The high success rate of exome sequencing is likely attributable to the expectation of homozygous variants in patients of consanguineous families, and in one case, the availability of positional mapping data that greatly aided the variant prioritization.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Pré-Escolar , Humanos , Consanguinidade , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Genômica , Linhagem , Fatores de Troca do Nucleotídeo Guanina/genética
3.
Clin Genet ; 102(1): 61-65, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35246978

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are a spectrum of abnormalities affecting morphogenesis of the kidneys and other structures of the urinary tract. Bilateral renal agenesis (BRA) is the most severe presentation of CAKUT. Loss of either nephronectin (NPNT) or its receptor ITGA8 leads to failure of metanephric kidney development with resulting renal agenesis in murine models. Very recently, a single family with renal agenesis and a homozygous truncating variant in NPNT was reported. We report two families in whom genome-wide linkage analysis showed an autozygous locus linked to BRA (at least one member has unilateral renal agenesis) at 4q24, with an LOD score of ~3. Exome sequencing detected a nonsense variant in NPNT in both families within the linkage interval. The pathogenicity of this variant was supported by reverse transcription polymerase chain reaction data showing complete nonsense-mediated decay of the NPNT transcript. Our report confirms the candidacy of NPNT in renal agenesis in humans and shows that even complete loss of function can be compatible with the formation of a single kidney.


Assuntos
Rim Único , Animais , Anormalidades Congênitas , Proteínas da Matriz Extracelular , Humanos , Rim/anormalidades , Nefropatias/congênito , Camundongos , Anormalidades Urogenitais , Refluxo Vesicoureteral
4.
Genome Med ; 13(1): 161, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645488

RESUMO

BACKGROUND: Molecular autopsy refers to DNA-based identification of the cause of death. Despite recent attempts to broaden its scope, the term remains typically reserved to sudden unexplained death in young adults. In this study, we aim to showcase the utility of molecular autopsy in defining lethal variants in humans. METHODS: We describe our experience with a cohort of 481 cases in whom the cause of premature death was investigated using DNA from the index or relatives (molecular autopsy by proxy). Molecular autopsy tool was typically exome sequencing although some were investigated using targeted approaches in the earlier stages of the study; these include positional mapping, targeted gene sequencing, chromosomal microarray, and gene panels. RESULTS: The study includes 449 cases from consanguineous families and 141 lacked family history (simplex). The age range was embryos to 18 years. A likely causal variant (pathogenic/likely pathogenic) was identified in 63.8% (307/481), a much higher yield compared to the general diagnostic yield (43%) from the same population. The predominance of recessive lethal alleles allowed us to implement molecular autopsy by proxy in 55 couples, and the yield was similarly high (63.6%). We also note the occurrence of biallelic lethal forms of typically non-lethal dominant disorders, sometimes representing a novel bona fide biallelic recessive disease trait. Forty-six disease genes with no OMIM phenotype were identified in the course of this study. The presented data support the candidacy of two other previously reported novel disease genes (FAAH2 and MSN). The focus on lethal phenotypes revealed many examples of interesting phenotypic expansion as well as remarkable variability in clinical presentation. Furthermore, important insights into population genetics and variant interpretation are highlighted based on the results. CONCLUSIONS: Molecular autopsy, broadly defined, proved to be a helpful clinical approach that provides unique insights into lethal variants and the clinical annotation of the human genome.


Assuntos
Autopsia/métodos , Morte Súbita , Sequenciamento do Exoma , Predisposição Genética para Doença/genética , Variação Genética , Adolescente , Amidoidrolases , Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Proteínas de Transporte , Criança , Pré-Escolar , Estudos de Coortes , DNA , Exoma , Genótipo , Humanos , Lactente , Recém-Nascido , Proteínas dos Microfilamentos , Linhagem , Fenótipo , Arábia Saudita
5.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34172899

RESUMO

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Assuntos
Perda Auditiva , Lisina-tRNA Ligase/genética , Transtornos do Neurodesenvolvimento , Alelos , Animais , Modelos Animais de Doenças , Perda Auditiva/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Peixe-Zebra/genética
8.
Am J Hum Genet ; 107(6): 1178-1185, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242396

RESUMO

We have previously described a heart-, eye-, and brain-malformation syndrome caused by homozygous loss-of-function variants in SMG9, which encodes a critical component of the nonsense-mediated decay (NMD) machinery. Here, we describe four consanguineous families with four different likely deleterious homozygous variants in SMG8, encoding a binding partner of SMG9. The observed phenotype greatly resembles that linked to SMG9 and comprises severe global developmental delay, microcephaly, facial dysmorphism, and variable congenital heart and eye malformations. RNA-seq analysis revealed a general increase in mRNA expression levels with significant overrepresentation of core NMD substrates. We also identified increased phosphorylation of UPF1, a key SMG1-dependent step in NMD, which most likely represents the loss of SMG8--mediated inhibition of SMG1 kinase activity. Our data show that SMG8 and SMG9 deficiency results in overlapping developmental disorders that most likely converge mechanistically on impaired NMD.


Assuntos
Deficiências do Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Degradação do RNAm Mediada por Códon sem Sentido , Adolescente , Encéfalo/anormalidades , Criança , Pré-Escolar , Consanguinidade , Deficiências do Desenvolvimento/metabolismo , Saúde da Família , Feminino , Deleção de Genes , Ligação Genética , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Fosforilação , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq , Transativadores/metabolismo , Adulto Jovem
9.
Genome Biol ; 21(1): 145, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552793

RESUMO

BACKGROUND: At least 50% of patients with suspected Mendelian disorders remain undiagnosed after whole-exome sequencing (WES), and the extent to which non-coding variants that are not captured by WES contribute to this fraction is unclear. Whole transcriptome sequencing is a promising supplement to WES, although empirical data on the contribution of RNA analysis to the diagnosis of Mendelian diseases on a large scale are scarce. RESULTS: Here, we describe our experience with transcript-deleterious variants (TDVs) based on a cohort of 5647 families with suspected Mendelian diseases. We first interrogate all families for which the respective Mendelian phenotype could be mapped to a single locus to obtain an unbiased estimate of the contribution of TDVs at 18.9%. We examine the entire cohort and find that TDVs account for 15% of all "solved" cases. We compare the results of RT-PCR to in silico prediction. Definitive results from RT-PCR are obtained from blood-derived RNA for the overwhelming majority of variants (84.1%), and only a small minority (2.6%) fail analysis on all available RNA sources (blood-, skin fibroblast-, and urine renal epithelial cells-derived), which has important implications for the clinical application of RNA-seq. We also show that RNA analysis can establish the diagnosis in 13.5% of 155 patients who had received "negative" clinical WES reports. Finally, our data suggest a role for TDVs in modulating penetrance even in otherwise highly penetrant Mendelian disorders. CONCLUSIONS: Our results provide much needed empirical data for the impending implementation of diagnostic RNA-seq in conjunction with genome sequencing.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Análise de Sequência de RNA , Estudos de Coortes , Simulação por Computador , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Modelos Genéticos , Arábia Saudita/epidemiologia , Sequenciamento do Exoma
10.
Hepatology ; 71(6): 2067-2079, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31595528

RESUMO

BACKGROUND AND AIMS: The clinical consequences of defective primary cilium (ciliopathies) are characterized by marked phenotypic and genetic heterogeneity. Although fibrocystic liver disease is an established ciliopathy phenotype, severe neonatal cholestasis is rarely recognized as such. APPROACH AND RESULTS: We describe seven individuals from seven families with syndromic ciliopathy clinical features, including severe neonatal cholestasis (lethal in one and necessitating liver transplant in two). Positional mapping revealed a single critical locus on chromosome 7. Whole-exome sequencing revealed three different homozygous variants in Tetratricopeptide Repeat Domain 26 (TTC26) that fully segregated with the phenotype. TTC26 (intraflagellar transport [IFT] 56/DYF13) is an atypical component of IFT-B complex, and deficiency of its highly conserved orthologs has been consistently shown to cause defective ciliary function in several model organisms. We show that cilia in TTC26-mutated patient cells display variable length and impaired function, as indicated by dysregulated sonic hedgehog signaling, abnormal staining for IFT-B components, and transcriptomic clustering with cells derived from individuals with closely related ciliopathies. We also demonstrate a strong expression of Ttc26 in the embryonic mouse liver in a pattern consistent with its proposed role in the normal development of the intrahepatic biliary system. CONCLUSIONS: In addition to establishing a TTC26-related ciliopathy phenotype in humans, our results highlight the importance of considering ciliopathies in the differential diagnosis of severe neonatal cholestasis even in the absence of more typical features.


Assuntos
Colestase Intra-Hepática/genética , Doenças do Recém-Nascido/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Repetições de Tetratricopeptídeos/genética , Animais , Ciliopatias , Diagnóstico Diferencial , Proteínas Hedgehog , Humanos , Recém-Nascido , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Transporte Proteico/genética , Índice de Gravidade de Doença , Sequenciamento do Exoma/métodos
11.
Eur J Hum Genet ; 28(4): 525-528, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31570783

RESUMO

Congenital heart disease (CHD) is the most common type of birth defects with family- and population-based studies supporting a strong hereditary component. Multifactorial inheritance is the rule although a growing number of Mendelian forms have been described including candidates that have yet to be confirmed independently. TLL1 is one such candidate that was proposed in the etiology of atrial septal defect (ASD). We describe a girl with congenitally corrected transposition of the great arteries (ccTGA) and ASD secundum whose whole-exome sequencing (WES) revealed a de novo splicing (c.1379-2A>G) variant in TLL1 as well as an inherited truncating variant in NODAL. The identification of this dual molecular diagnosis both supports the candidacy of TLL1 in ASD pathogenesis and highlights the power of WES in revealing multilocus cardiac phenotypes.


Assuntos
Comunicação Interatrial/genética , Mutação , Metaloproteases Semelhantes a Toloide/genética , Feminino , Deleção de Genes , Comunicação Interatrial/diagnóstico , Humanos , Lactente , Proteína Nodal/genética , Splicing de RNA
12.
Stem Cell Res ; 50: 102148, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33421754

RESUMO

Glucagon-like peptide-1 receptor (GLP1R) is a seven-transmembrane-spanning helices membrane protein expressed in multiple human tissues including pancreatic islets, lung, brain, heart and central nervous system (CNS). GLP1R agonists are commonly used as antidiabetic drugs, but a neuroprotective function in neurodegenerative disorders is emerging. Here, we established two iPSC lines from a patient harboring a rare homozygous splice site variant in GLP1R (NM_002062.3; c.402 + 3delG). This patient displays severe developmental delay and epileptic encephalopathy. Therefore, the derivation of these iPSC lines constitutes a primary model to study the molecular pathology of GLP1R dysfunction and develop novel therapeutic targets.

13.
Am J Hum Genet ; 104(4): 731-737, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905400

RESUMO

Ciliopathies are clinical disorders of the primary cilium with widely recognized phenotypic and genetic heterogeneity. In two Arab consanguineous families, we mapped a ciliopathy phenotype that most closely matches Joubert syndrome (hypotonia, developmental delay, typical facies, oculomotor apraxia, polydactyly, and subtle posterior fossa abnormalities) to a single locus in which a founder homozygous truncating variant in FAM149B1 was identified by exome sequencing. We subsequently identified a third Arab consanguineous multiplex family in which the phenotype of Joubert syndrome/oral-facial-digital syndrome (OFD VI) was found to co-segregate with the same founder variant in FAM149B1. Independently, autozygosity mapping and exome sequencing in a consanguineous Turkish family with Joubert syndrome highlighted a different homozygous truncating variant in the same gene. FAM149B1 encodes a protein of unknown function. Mutant fibroblasts were found to have normal ciliogenesis potential. However, distinct cilia-related abnormalities were observed in these cells: abnormal accumulation IFT complex at the distal tips of the cilia, which assumed bulbous appearance, increased length of the primary cilium, and dysregulated SHH signaling. We conclude that FAM149B1 is required for normal ciliary biology and that its deficiency results in a range of ciliopathy phenotypes in humans along the spectrum of Joubert syndrome.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Cílios/patologia , Ciliopatias/diagnóstico , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação , Retina/anormalidades , Adolescente , Alelos , Pré-Escolar , Cílios/genética , Consanguinidade , Exoma , Genes Recessivos , Homozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Síndromes Orofaciodigitais/genética , Fenótipo , Análise de Sequência de DNA , Transdução de Sinais , Turquia
14.
Genet Med ; 21(3): 736-742, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30237576

RESUMO

PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.


Assuntos
Doença/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Variação Biológica da População/genética , Criança , Pré-Escolar , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Feminino , Testes Genéticos/normas , Variação Genética , Genótipo , Hereditariedade/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo
15.
Genet Med ; 20(12): 1609-1616, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29620724

RESUMO

PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.


Assuntos
Exoma/genética , Heterogeneidade Genética , Predisposição Genética para Doença , Anormalidades Musculoesqueléticas/genética , Alelos , Proteínas Sanguíneas/genética , Hidrolases de Éster Carboxílico , Estudos de Coortes , Exorribonucleases/genética , Feminino , Proteínas Fetais/genética , Efeito Fundador , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Anormalidades Musculoesqueléticas/classificação , Anormalidades Musculoesqueléticas/patologia , Proteínas de Neoplasias/genética , Proteínas Oncogênicas/genética , Fenótipo , Receptores de Superfície Celular/genética , Proteína Wnt3A/genética
16.
Ann Neurol ; 83(2): 433-436, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29360170

RESUMO

Neural tube defects (NTDs) are among the most common birth defects in humans and yet their molecular etiology remains poorly understood. NTDs are believed to result from the complex interaction of environmental factors with a multitude of genetic risk factors in a classical multifactorial disease model. Mendelian forms of NTDs in which single variants are sufficient to cause the disease are extremely rare. We report a monozygotic twin with severe NTDs (occipital encephalocele and myelomeningocele) and a shared de novo, likely truncating, variant in SMARCC1. RTPCR analysis suggests the potential null nature of the variant attributed to nonsense-mediated decay. SMARCC1 is extremely constrained in humans and encodes a highly conserved core chromatin remodeler, BAF155. Mice that are heterozygous for a null allele or homozygous for a hypomorphic allele develop severe NTDs in the form of exencephaly. This is the first report of SMARCC1 mutation in humans, and it shows a critical and conserved requirement for intact BAF chromatin remodeling complex in neurulation. Ann Neurol 2018;83:433-436.


Assuntos
Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Fatores de Transcrição/genética , Gêmeos Monozigóticos/genética , Feminino , Humanos , Lactente , Mutação
18.
Genet Med ; 20(1): 64-68, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28640246

RESUMO

PurposeGenome-wide association studies (GWAS) have been instrumental to our understanding of the genetic risk determinants of complex traits. A common challenge in GWAS is the interpretation of signals, which are usually attributed to the genes closest to the polymorphic markers that display the strongest statistical association. Naturally occurring complete loss of function (knockout) of these genes in humans can inform GWAS interpretation by unmasking their deficiency state in a clinical context.MethodsWe exploited the unique population structure of Saudi Arabia to identify novel knockout events in genes previously highlighted in GWAS using combined autozygome/exome analysis.ResultsWe report five families with homozygous truncating mutations in genes that had only been linked to human disease through GWAS. The phenotypes observed in the natural knockouts for these genes (TRAF3IP2, FRMD3, RSRC1, BTBD9, and PXDNL) range from consistent with, to unrelated to, the previously reported GWAS phenotype.ConclusionWe expand the role of human knockouts in the medical annotation of the human genome, and show their potential value in informing the interpretation of GWAS of complex traits.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Mutação com Perda de Função , Alelos , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Genômica/métodos , Genômica/normas , Genótipo , Humanos , Fenótipo , Arábia Saudita
19.
Hum Genet ; 136(11-12): 1419-1429, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28940097

RESUMO

Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.


Assuntos
Exoma/genética , Heterogeneidade Genética , Marcadores Genéticos , Deficiência Intelectual/genética , Mutação , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Conformação Proteica
20.
Hum Genet ; 135(5): 525-540, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27023906

RESUMO

Ehlers-Danlos syndrome (EDS) describes a group of clinical entities in which the connective tissue, primarily that of the skin, joint and vessels, is abnormal, although the resulting clinical manifestations can vary widely between the different historical subtypes. Many cases of hereditary disorders of connective tissue that do not seem to fit these historical subtypes exist. The aim of this study is to describe a large series of patients with inherited connective tissue disorders evaluated by our clinical genetics service and for whom a likely causal variant was identified. In addition to clinical phenotyping, patients underwent various genetic tests including molecular karyotyping, candidate gene analysis, autozygome analysis, and whole-exome and whole-genome sequencing as appropriate. We describe a cohort of 69 individuals representing 40 families, all referred because of suspicion of an inherited connective tissue disorder by their primary physician. Molecular lesions included variants in the previously published disease genes B3GALT6, GORAB, ZNF469, B3GAT3, ALDH18A1, FKBP14, PYCR1, CHST14 and SPARC with interesting variations on the published clinical phenotypes. We also describe the first recessive EDS-like condition to be caused by a recessive COL1A1 variant. In addition, exome capture in a familial case identified a homozygous truncating variant in a novel and compelling candidate gene, AEBP1. Finally, we also describe a distinct novel clinical syndrome of cutis laxa and marked facial features and propose ATP6V1E1 and ATP6V0D2 (two subunits of vacuolar ATPase) as likely candidate genes based on whole-genome and whole-exome sequencing of the two families with this new clinical entity. Our study expands the clinical spectrum of hereditary disorders of connective tissue and adds three novel candidate genes including two that are associated with a highly distinct syndrome.


Assuntos
Doenças do Tecido Conjuntivo/genética , Heterogeneidade Genética , Marcadores Genéticos/genética , Anormalidades da Pele/genética , Sequência de Aminoácidos , Estudos de Coortes , Doenças do Tecido Conjuntivo/patologia , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA