Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transplantation ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845088

RESUMO

BACKGROUND: The TWO Study (Transplantation Without Overimmunosuppression) aimed to investigate a novel approach to regulatory T-cell (Treg) therapy in renal transplant patients, using a delayed infusion protocol at 6 mo posttransplant to promote a Treg-skewed lymphocyte repopulation after alemtuzumab induction. We hypothesized that this would allow safe weaning of immunosuppression to tacrolimus alone. The COVID-19 pandemic led to the suspension of alemtuzumab use, and therefore, we report the unique cohort of 7 patients who underwent the original randomized controlled trial protocol. This study presents a unique insight into Treg therapy combined with alemtuzumab and is therefore an important proof of concept for studies in other diseases that are considering lymphodepletion. METHODS: Living donor kidney transplant recipients were randomized to receive autologous polyclonal Treg at week 26 posttransplantation, coupled with weaning doses of tacrolimus, (Treg therapy arm) or standard immunosuppression alone (tacrolimus and mycophenolate mofetil). Primary outcomes were patient survival and rejection-free survival. RESULTS: Successful cell manufacturing and cryopreservation until the 6-mo infusion were achieved. Patient and transplant survival was 100%. Acute rejection-free survival was 100% in the Treg-treated group at 18 mo after transplantation. Although alemtuzumab caused a profound depletion of all lymphocytes, including Treg, after cell therapy infusion, there was a transient increase in peripheral Treg numbers. CONCLUSIONS: The study establishes that delayed autologous Treg therapy is both feasible and safe, even 12 mo after cell production. The findings present a new treatment protocol for Treg therapy, potentially expanding its applications to other indications.

2.
Bioengineering (Basel) ; 11(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38671768

RESUMO

Hepatic cancer is widely regarded as the leading cause of cancer-related mortality worldwide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor. Therefore, there is an urgent need to develop more representative in vitro models of liver cancer for pathophysiology and drug screening studies. Fortunately, an exciting new development for generating liver models in recent years has been the advent of organoid technology. Organoid models hold huge potential as an in vitro research tool because they can recapitulate the spatial architecture of primary liver cancers and maintain the molecular and functional variations of the native tissue counterparts during long-term culture in vitro. This review provides a comprehensive overview and discussion of the establishment and application of liver organoid models in vitro. Bioengineering strategies used to construct organoid models are also discussed. In addition, the clinical potential and other relevant applications of liver organoid models in different functional states are explored. In the end, this review discusses current limitations and future prospects to encourage further development.

3.
Biomedicines ; 12(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398048

RESUMO

Liver organoids take advantage of several important features of pluripotent stem cells that self-assemble in a three-dimensional culture matrix and reproduce many aspects of the complex organization found within their native tissue or organ counterparts. Compared to other 2D or 3D in vitro models, organoids are widely believed to be genetically stable or docile structures that can be programmed to virtually recapitulate certain biological, physiological, or pathophysiological features of original tissues or organs in vitro. Therefore, organoids can be exploited as effective substitutes or miniaturized models for the study of the developmental mechanisms of rare liver diseases, drug discovery, the accurate evaluation of personalized drug responses, and regenerative medicine applications. However, the bioengineering of organoids currently faces many groundbreaking challenges, including a need for a reasonable tissue size, structured organization, vascularization, functional maturity, and reproducibility. In this review, we outlined basic methodologies and supplements to establish organoids and summarized recent technological advances for experimental liver biology. Finally, we discussed the therapeutic applications and current limitations.

4.
Bioengineering (Basel) ; 10(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37892856

RESUMO

Biomaterial templates play a critical role in establishing and bioinstructing three-dimensional cellular growth, proliferation and spatial morphogenetic processes that culminate in the development of physiologically relevant in vitro liver models. Various natural and synthetic polymeric biomaterials are currently available to construct biomimetic cell culture environments to investigate hepatic cell-matrix interactions, drug response assessment, toxicity, and disease mechanisms. One specific class of natural biomaterials consists of the decellularized liver extracellular matrix (dECM) derived from xenogeneic or allogeneic sources, which is rich in bioconstituents essential for the ultrastructural stability, function, repair, and regeneration of tissues/organs. Considering the significance of the key design blueprints of organ-specific acellular substrates for physiologically active graft reconstruction, herein we showcased the latest updates in the field of liver decellularization-recellularization technologies. Overall, this review highlights the potential of acellular matrix as a promising biomaterial in light of recent advances in the preparation of liver-specific whole organ scaffolds. The review concludes with a discussion of the challenges and future prospects of liver-specific decellularized materials in the direction of translational research.

5.
Diagnostics (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37761334

RESUMO

Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are important liver enzymes in clinical settings. Their levels are known to be elevated in individuals with underlying liver diseases and those consuming hepatotoxic drugs. Serum ALT and AST levels are crucial for diagnosing and assessing liver diseases. Serum ALT is considered the most reliable and specific candidate as a disease biomarker for liver diseases. ALT and AST levels are routinely analyzed in high-risk individuals for the bioanalysis of both liver function and complications associated with drug-induced liver injury. Typically, ALT and AST require blood sampling, serum separation, and testing. Traditional methods require expensive or sophisticated equipment and trained specialists, which is often time-consuming. Therefore, developing countries have limited or no access to these methods. To address the above issues, we hypothesize that low-cost biosensing methods (paper-based assays) can be applied to the analysis of ALT and AST levels in biological fluids. The paper-based biodetection technique can semi-quantitatively measure ALT and AST from capillary finger sticks, and it will pave the way for the development of an inexpensive and rapid alternative method for the early detection and diagnosis of liver diseases. This method is expected to significantly reduce the economic burden and aid routine clinical analysis in both developed and underdeveloped countries. The development of low-cost testing platforms and their diagnostic utility will be extremely beneficial in helping millions of patients with liver disorders.

6.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444523

RESUMO

Lung cancer is the most commonly diagnosed of all cancers and one of the leading causes of cancer deaths among men and women worldwide, causing 1.5 million deaths every year. Despite developments in cancer treatment technologies and new pharmaceutical products, high mortality and morbidity remain major challenges for researchers. More than 75% of lung cancer patients are diagnosed in advanced stages, leading to poor prognosis. Lung cancer is a multistep process associated with genetic and epigenetic abnormalities. Rapid, accurate, precise, and reliable detection of lung cancer biomarkers in biological fluids is essential for risk assessment for a given individual and mortality reduction. Traditional diagnostic tools are not sensitive enough to detect and diagnose lung cancer in the early stages. Therefore, the development of novel bioanalytical methods for early-stage screening and diagnosis is extremely important. Recently, biosensors have gained tremendous attention as an alternative to conventional methods because of their robustness, high sensitivity, inexpensiveness, and easy handling and deployment in point-of-care testing. This review provides an overview of the conventional methods currently used for lung cancer screening, classification, diagnosis, and prognosis, providing updates on research and developments in biosensor technology for the detection of lung cancer biomarkers in biological samples. Finally, it comments on recent advances and potential future challenges in the field of biosensors in the context of lung cancer diagnosis and point-of-care applications.

7.
Int J Bioprint ; 9(3): 714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273993

RESUMO

The absolute shortage of compatible liver donors and the growing number of potential recipients have led scientists to explore alternative approaches to providing tissue/ organ substitutes from bioengineered sources. Bioartificial regeneration of a fully functional tissue/organ replacement is highly dependent on the right combination of engineering tools, biological principles, and materiobiology horizons. Over the past two decades, remarkable achievements have been made in hepatic tissue engineering by converging various advanced interdisciplinary research approaches. Three-dimensional (3D) bioprinting has arisen as a promising state-of-the-art tool with strong potential to fabricate volumetric liver tissue/organ equivalents using viscosity- and degradation-controlled printable bioinks composed of hydrous microenvironments, and formulations containing living cells and associated supplements. Source of origin, biophysiochemical, or thermomechanical properties and crosslinking reaction kinetics are prerequisites for ideal bioink formulation and realizing the bioprinting process. In this review, we delve into the forecast of the potential future utility of bioprinting technology and the promise of tissue/organ- specific decellularized biomaterials as bioink substrates. Afterward, we outline various methods of decellularization, and the most relevant studies applying decellularized bioinks toward the bioengineering of in vitro liver models. Finally, the challenges and future prospects of decellularized material-based bioprinting in the direction of clinical regenerative medicine are presented to motivate further developments.

8.
Front Immunol ; 12: 664244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841448

RESUMO

A number of immune regulatory cellular therapies, including regulatory T cells and mesenchymal stromal cells, have emerged as novel alternative therapies for the control of transplant alloresponses. Clinical studies have demonstrated their feasibility and safety, however developing our understanding of the impact of cellular therapeutics in vivo requires advanced immune monitoring strategies. To accurately monitor the immune response, a combination of complementary methods is required to measure the cellular and molecular phenotype as well as the function of cells involved. In this review we focus on the current immune monitoring strategies and discuss which methods may be utilized in the future.


Assuntos
Transplante de Células , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Monitorização Imunológica/métodos , Animais , Transplante de Células/efeitos adversos , Transplante de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/normas , Tomada de Decisão Clínica , Ensaios Clínicos como Assunto/normas , Gerenciamento Clínico , Humanos , Monitorização Imunológica/normas , Especificidade de Órgãos , Resultado do Tratamento
9.
Am J Transplant ; 21(4): 1603-1611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33171020

RESUMO

Short-term outcomes in kidney transplantation are marred by progressive transplant failure and mortality secondary to immunosuppression toxicity. Immune modulation with autologous polyclonal regulatory T cell (Treg) therapy may facilitate immunosuppression reduction promoting better long-term clinical outcomes. In a Phase I clinical trial, 12 kidney transplant recipients received 1-10 × 106 Treg per kg at Day +5 posttransplantation in lieu of induction immunosuppression (Treg Therapy cohort). Nineteen patients received standard immunosuppression (Reference cohort). Primary outcomes were rejection-free and patient survival. Patient and transplant survival was 100%; acute rejection-free survival was 100% in the Treg Therapy versus 78.9% in the reference cohort at 48 months posttransplant. Treg therapy revealed no excess safety concerns. Four patients in the Treg Therapy cohort had mycophenolate mofetil withdrawn successfully and remain on tacrolimus monotherapy. Treg infusion resulted in a long-lasting dose-dependent increase in peripheral blood Tregs together with an increase in marginal zone B cell numbers. We identified a pretransplantation immune phenotype suggesting a high risk of unsuccessful ex-vivo Treg expansion. Autologous Treg therapy is feasible, safe, and is potentially associated with a lower rejection rate than standard immunosuppression. Treg therapy may provide an exciting opportunity to minimize immunosuppression therapy and improve long-term outcomes.


Assuntos
Transplante de Rim , Estudos de Viabilidade , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Humanos , Imunossupressores/uso terapêutico , Doadores Vivos , Monitorização Imunológica , Linfócitos T Reguladores
10.
Cell Immunol ; 357: 104214, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32977154

RESUMO

Transplantation is limited by the need for life-long pharmacological immunosuppression, which carries significant morbidity and mortality. Regulatory T cell (Treg) therapy holds significant promise as a strategy to facilitate immunosuppression minimization. Polyclonal Treg therapy has been assessed in a number of Phase I/II clinical trials in both solid organ and hematopoietic transplantation. Attention is now shifting towards the production of alloantigen-reactive Tregs (arTregs) through co-culture with donor antigen. These allospecific cells harbour potent suppressive function and yet their specificity implies a theoretical reduction in off-target effects. This review will cover the progress in the development of arTregs including their potential application for clinical use in transplantation, the knowledge gained so far from clinical trials of Tregs in transplant patients, and future directions for Treg therapy.


Assuntos
Isoantígenos/uso terapêutico , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Animais , Rejeição de Enxerto/imunologia , Humanos , Tolerância Imunológica/imunologia , Terapia de Imunossupressão/métodos , Isoantígenos/imunologia , Tolerância ao Transplante/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA