RESUMO
In soil, chromium can be found in two main valence forms: hexavalent Cr (VI) and trivalent Cr (III). In terms of toxicity, the most toxic form to plants is Cr (VI). In the present study, we investigated the impact of Cr (VI) (0, 25, 50, 75 and 100 ppm) on growth, physiological parameters and the translocation kinetics of Cr (VI) in the faba bean plant (Vicia faba L.). The results showed that Cr (VI) negatively affects growth parameters (- 15% to - 72%), tolerance index (- 34.05% to - 64.7%), and reduce the total chlorophyll content (until 40%) compared to control plants without Cr (VI). However, the increase of Cr (VI) concentration in the soil, stimulated the synthesis of sugars (max 6,97 mg/g FM), proteins (max 62.89 µg/mg FM) and proline (max 98.57 µg/mg FM) and increased the electrolyte leakage (+ 2.5% to + 9%) compared to control plants. Cr (VI) concentrations in shoots and roots increased significantly for all Cr (VI) doses applied. The translocation factor results showed that the majority of the Cr (VI) absorbed by the plant is stored in the roots, with a very low bioaccumulation factor, which does not exceed 0.4. The findings show that Cr (VI) negatively affects the morpho-physiological parameters of Vicia faba, the bioaccumulation of organic solutes and the low bioaccumulation factor of Cr (VI) can be considered as a strategy of tolerance to Cr(V).
Assuntos
Vicia faba , Cromo/toxicidade , Bioacumulação , Clorofila , SoloRESUMO
Chitosan (Cs)-based composites were developed by incorporating silica (Cs-Si), and both silica and hydroxyapatite (Cs-Si-Hap), comparatively tested to sequester hexavalent (Cr(VI)) ions from water. XRD and FT-IR data affirmed the formation of Cs-Si and Cs-Si-Hap composite. Morphological images exhibits homogeneous Cs-Si surface, decorated with SiO2 nanoparticles, while the Cs-Si-Hap surface was non-homogeneous with microstructures, having SiO2 and Hap nanoparticles. Thermal analysis data revealed excellent thermal stability of the developed composites. Significant influence of pH, adsorbent dose, contact time, temperature, and coexisting anions on Cr(VI) adsorption onto composites was observed. Maximum Cr(VI) uptakes on Cs and developed composites were observed at pH 3. The equilibration time for Cr(VI) adsorption on Cs-Si-Hap was 10 min, comparatively better than Cs and Cs-Si. The adsorption data was fitted to pseudo-second-order kinetic and Langmuir isotherm models with respective maximum monolayer adsorption capacities (qm) of 55.5, 64.4, and 212.8 mg/g for Cs, Cs-Si, and Cs-Si-Hap. Regeneration studies showed that composites could be used for three consecutive cycles without losing their adsorption potential.
RESUMO
Herein, a chitosan (CH) and fluroapatite (TNP) based CH-TNP composite was synthesized by utilizing seafood waste and phosphate rock and was tested for divalent copper (Cu(II)) adsorptive removal from water. The XRD and FT-IR data affirmed the formation of a CH-TNP composite, while BET analysis showed that the surface area of the CH-TNP composite (35.5 m2/g) was twice that of CH (16.7 m2/g). Mechanistically, electrostatic, van der Waals, and co-ordinate interactions were primarily responsible for the binding of Cu(II) with the CH-TNP composite. The maximum Cu(II) uptake of both CH and CH-TNP composite was recorded in the pH range 3-4. Monolayer Cu(II) coverage over both CH and CH-TNP surfaces was confirmed by the fitting of adsorption data to a Langmuir isotherm model. The chemical nature of the adsorption process was confirmed by the fitting of a pseudo-second-order kinetic model to adsorption data. About 82% of Cu(II) from saturated CH-TNP was recovered by 0.5 M NaOH. A significant drop in Cu(II) uptake was observed after four consecutive regeneration cycles. The co-existing ions (in binary and ternary systems) significantly reduced the Cu(II) removal efficacy of CH-TNP.