Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Trends Biochem Sci ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692993

RESUMO

Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.

2.
RSC Chem Biol ; 5(1): 30-40, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179192

RESUMO

Sortase enzymes are cysteine transpeptidases that attach environmental sensors, toxins, and other proteins to the cell surface in Gram-positive bacteria. The recognition motif for many sortases is the cell wall sorting signal (CWSS), LPXTG, where X = any amino acid. Recent work from ourselves and others has described recognition of additional amino acids at a number of positions in the CWSS, specifically at the Thr (or P1) and Gly (or P1') positions. In addition, although standard cleavage occurs between these two residues (P1/P1'), we previously observed that the SrtA enzyme from Streptococcus pneumoniae will cleave after the P1' position when its identity is a Leu or Phe. The stereochemical basis of this alternative cleavage is not known, although homologs, e.g., SrtA from Listeria monocytogenes or Staphylococcus aureus do not show alternative cleavage to a significant extent. Here, we use protein biochemistry, structural biology, and computational biochemistry to predict an alternative binding mode that facilitates alternative cleavage. We use Streptococcus pyogenes SrtA (spySrtA) as our model enzyme, first confirming that it shows similar standard/alternative cleavage ratios for LPATL, LPATF, and LPATY sequences. Molecular dynamics simulations suggest that when P1' is Leu, this amino acid binds in the canonical S1 pocket, pushing the P1 Thr towards solvent. The P4 Leu (L̲PATL) binds as it does in standard binding, resulting in a puckered binding conformation. We use P1 Glu-containing peptides to support our hypotheses, and present the complex structure of spySrtA-LPALA to confirm favorable accommodation of Leu in the S1 pocket. Overall, we structurally characterize an alternative binding mode for spySrtA and specific target sequences, expanding the potential protein engineering possibilities in sortase-mediated ligation applications.

3.
Biochem Mol Biol Educ ; 51(6): 606-615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37462254

RESUMO

High school science fairs provide an exceptional opportunity for students to gain experience with scientific research, and participation has positive outcomes with respect to chosen careers in the sciences. However, it can be challenging to engage high school students in university-level research outside of formal internship programs. Here, we describe an experimental pipeline for a computational structural biology project that engages high school students. Students are involved at every step of the investigation and utilize freely available software to dock inhibitors onto protein homologues, and then analyze the resulting complexes. Bacterial sortases are transpeptidases on the cell surface of Gram-positive bacteria and are a potential target for the development of antibiotics. Students modeled inhibitors bound to sortases from several organisms, asking questions about affinity and selectivity. Their project was ranked in the top 10% at both regional and state science fairs. This project design is easily adaptable to countless other protein systems and provides a pipeline for collaborative high school student/university professor inquiry.


Assuntos
Bactérias , Estudantes , Humanos , Instituições Acadêmicas , Universidades
4.
Protein Sci ; 32(4): e4611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851847

RESUMO

Protein-protein interactions that involve recognition of short peptides are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are a family of peptide-binding domains located in several intracellular signaling and trafficking pathways. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had marginal effects on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Domínios PDZ , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Ligação Proteica , Peptídeos/química , Entropia
5.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711692

RESUMO

Protein-protein interactions that include recognition of short sequences of amino acids, or peptides, are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are an example of a peptide-binding domain located in several intracellular signaling and trafficking pathways, which form interactions critical for the regulation of receptor endocytic trafficking, tight junction formation, organization of supramolecular complexes in neurons, and other biological systems. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had a marginal effect on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.

6.
J Biol Chem ; 298(10): 102446, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055407

RESUMO

The cell wall is a critical extracellular barrier for bacteria and many other organisms. In bacteria, this structural layer consists of peptidoglycan, which maintains cell shape and structural integrity and provides a scaffold for displaying various protein factors. To attach proteins to the cell wall, Gram-positive bacteria utilize sortase enzymes, which are cysteine transpeptidases that recognize and cleave a specific sorting signal, followed by ligation of the sorting signal-containing protein to the peptidoglycan precursor lipid II (LII). This mechanism is the subject of considerable interest as a target for therapeutic intervention and as a tool for protein engineering, where sortases have enabled sortase-mediated ligation or sortagging strategies. Despite these uses, there remains an incomplete understanding of the stereochemistry of substrate recognition and ligation product formation. Here, we solved the first structures of sortase A from Streptococcus pyogenes bound to two substrate sequences, LPATA and LPATS. In addition, we synthesized a mimetic of the product of sortase-mediated ligation involving LII (LPAT-LII) and solved the complex structure in two ligand conformations. These structures were further used as the basis for molecular dynamics simulations to probe sortase A-ligand dynamics and to construct a model of the acyl-enzyme intermediate, thus providing a structural view of multiple key states in the catalytic mechanism. Overall, this structural information provides new insights into the recognition of the sortase substrate motif and LII ligation partner and will support the continued development of sortases for protein engineering applications.


Assuntos
Aminoaciltransferases , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligantes , Peptidoglicano , Streptococcus pyogenes/enzimologia
7.
Protein Sci ; 31(10): e4411, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173161

RESUMO

Many tyrosine kinases cannot be expressed readily in Escherichia coli, limiting facile production of these proteins for biochemical experiments. We used ancestral sequence reconstruction to generate a spleen tyrosine kinase (Syk) variant that can be expressed in bacteria and purified in soluble form, unlike the human members of this family (Syk and zeta-chain-associated protein kinase of 70 kDa [ZAP-70]). The catalytic activity, substrate specificity, and regulation by phosphorylation of this Syk variant are similar to the corresponding properties of human Syk and ZAP-70. Taking advantage of the ability to express this novel Syk-family kinase in bacteria, we developed a two-hybrid assay that couples the growth of E. coli in the presence of an antibiotic to successful phosphorylation of a bait peptide by the kinase. Using this assay, we screened a site-saturation mutagenesis library of the kinase domain of this reconstructed Syk-family kinase. Sites of loss-of-function mutations identified in the screen correlate well with residues established previously as critical to function and/or structure in protein kinases. We also identified activating mutations in the regulatory hydrophobic spine and activation loop, which are within key motifs involved in kinase regulation. Strikingly, one mutation in an ancestral Syk-family variant increases the soluble expression of the protein by 75-fold. Thus, through ancestral sequence reconstruction followed by deep mutational scanning, we have generated Syk-family kinase variants that can be expressed in bacteria with very high yield.


Assuntos
Escherichia coli , Peptídeos e Proteínas de Sinalização Intracelular , Antibacterianos , Precursores Enzimáticos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutagênese , Peptídeos/química , Fosforilação , Quinase Syk/genética , Quinase Syk/metabolismo , Tirosina/genética
8.
Protein Sci ; 31(3): 701-715, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34939250

RESUMO

Sequence variation in related proteins is an important characteristic that modulates activity and selectivity. An example of a protein family with a large degree of sequence variation is that of bacterial sortases, which are cysteine transpeptidases on the surface of gram-positive bacteria. Class A sortases are responsible for attachment of diverse proteins to the cell wall to facilitate environmental adaption and interaction. These enzymes are also used in protein engineering applications for sortase-mediated ligations (SML) or sortagging of protein targets. We previously investigated SrtA from Streptococcus pneumoniae, identifying a number of putative ß7-ß8 loop-mediated interactions that affected in vitro enzyme function. We identified residues that contributed to the ability of S. pneumoniae SrtA to recognize several amino acids at the P1' position of the substrate motif, underlined in LPXTG, in contrast to the strict P1' Gly recognition of SrtA from Staphylococcus aureus. However, motivated by the lack of a structural model for the active, monomeric form of S. pneumoniae SrtA, here, we expanded our studies to other Streptococcus SrtA proteins. We solved the first monomeric structure of S. agalactiae SrtA which includes the C-terminus, and three others of ß7-ß8 loop chimeras from S. pyogenes and S. agalactiae SrtA. These structures and accompanying biochemical data support our previously identified ß7-ß8 loop-mediated interactions and provide additional insight into their role in Class A sortase substrate selectivity. A greater understanding of individual SrtA sequence and structural determinants of target selectivity may also facilitate the design or discovery of improved sortagging tools.


Assuntos
Aminoaciltransferases , Aminoaciltransferases/química , Proteínas de Bactérias/química , Quimera/metabolismo , Cisteína Endopeptidases/química , Streptococcus pyogenes/metabolismo
9.
Molecules ; 26(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34641578

RESUMO

Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 µM affinity, a value commonly considered the threshold for cellular PDZ-peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.


Assuntos
Coanoflagelados/química , Coanoflagelados/metabolismo , Biologia Computacional/métodos , Domínios PDZ , Ligação Proteica , Sequência de Aminoácidos , Evolução Molecular , Humanos , Filogenia , Conformação Proteica , Transdução de Sinais , Software , Especificidade por Substrato
10.
J Biol Chem ; 297(2): 100981, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302812

RESUMO

Gram-positive bacteria contain sortase enzymes on their cell surfaces that catalyze transpeptidation reactions critical for proper cellular function. In vitro, sortases are used in sortase-mediated ligation (SML) reactions for a variety of protein engineering applications. Historically, sortase A from Staphylococcus aureus (saSrtA) has been the enzyme of choice to catalyze SML reactions. However, the stringent specificity of saSrtA for the LPXTG sequence motif limits its uses. Here, we describe the impact on substrate selectivity of a structurally conserved loop with a high degree of sequence variability in all classes of sortases. We investigate the contribution of this ß7-ß8 loop by designing and testing chimeric sortase enzymes. Our chimeras utilize natural sequence variation of class A sortases from eight species engineered into the SrtA sequence from Streptococcus pneumoniae. While some of these chimeric enzymes mimic the activity and selectivity of the WT protein from which the loop sequence was derived (e.g., that of saSrtA), others results in chimeric Streptococcus pneumoniae SrtA enzymes that are able to accommodate a range of residues in the final position of the substrate motif (LPXTX). Using mutagenesis, structural comparisons, and sequence analyses, we identify three interactions facilitated by ß7-ß8 loop residues that appear to be broadly conserved or converged upon in class A sortase enzymes. These studies provide the foundation for a deeper understanding of sortase target selectivity and can expand the sortase toolbox for future SML applications.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Domínio Catalítico , Cisteína Endopeptidases/química , Mutação , Engenharia de Proteínas/métodos , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/química , Staphylococcus aureus/isolamento & purificação , Especificidade por Substrato
11.
Protein Sci ; 29(11): 2226-2244, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914530

RESUMO

Identification of the molecular networks that facilitated the evolution of multicellular animals from their unicellular ancestors is a fundamental problem in evolutionary cellular biology. Choanoflagellates are recognized as the closest extant nonmetazoan ancestors to animals. These unicellular eukaryotes can adopt a multicellular-like "rosette" state. Therefore, they are compelling models for the study of early multicellularity. Comparative studies revealed that a number of putative human orthologs are present in choanoflagellate genomes, suggesting that a subset of these genes were necessary for the emergence of multicellularity. However, previous work is largely based on sequence alignments alone, which does not confirm structural nor functional similarity. Here, we focus on the PDZ domain, a peptide-binding domain which plays critical roles in myriad cellular signaling networks and which underwent a gene family expansion in metazoan lineages. Using a customized sequence similarity search algorithm, we identified 178 PDZ domains in the Monosiga brevicollis proteome. This includes 11 previously unidentified sequences, which we analyzed using Rosetta and homology modeling. To assess conservation of protein structure, we solved high-resolution crystal structures of representative M. brevicollis PDZ domains that are homologous to human Dlg1 PDZ2, Dlg1 PDZ3, GIPC, and SHANK1 PDZ domains. To assess functional conservation, we calculated binding affinities for mbGIPC, mbSHANK1, mbSNX27, and mbDLG-3 PDZ domains from M. brevicollis. Overall, we find that peptide selectivity is generally conserved between these two disparate organisms, with one possible exception, mbDLG-3. Overall, our results provide novel insight into signaling pathways in a choanoflagellate model of primitive multicellularity.


Assuntos
Algoritmos , Coanoflagelados/química , Modelos Moleculares , Domínios PDZ , Proteínas de Protozoários/química , Análise de Sequência de Proteína , Coanoflagelados/genética , Cristalografia por Raios X , Bases de Dados de Proteínas , Proteínas de Protozoários/genética
12.
J Struct Biol X ; 4: 100022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289118

RESUMO

Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.

13.
Protein Sci ; 28(12): 2127-2143, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31599029

RESUMO

Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM-binding domains in the human proteome, the PDZ domain. These domains bind the extreme C-terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer-PDZ, a program that filters and compares all motif-satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C-terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously-relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif-satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer-PDZ is a versatile program to investigate potential PDZ interactions. This proof-of-concept work is poised to enable similar types of analyses for other SLiM-binding domains (e.g., MotifAnalyzer-Kinase). MotifAnalyzer-PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu.


Assuntos
Proteínas do Tecido Nervoso/química , Domínios PDZ , Software , Coanoflagelados/química , Humanos , Ligação Proteica , Especificidade por Substrato
14.
Crit Rev Biochem Mol Biol ; 53(5): 535-563, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30183386

RESUMO

Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.


Assuntos
Citoplasma/enzimologia , Quinases da Família src/química , Quinases da Família src/metabolismo , Regulação Alostérica , Animais , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Evolução Molecular , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato , Domínios de Homologia de src , Quinases da Família src/genética
16.
Protein Sci ; 27(5): 923-932, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29498112

RESUMO

Cbl proteins are E3 ubiquitin ligases specialized for the regulation of tyrosine kinases by ubiquitylation. Human Cbl proteins are activated by tyrosine phosphorylation, thus setting up a feedback loop whereby the activation of tyrosine kinases triggers their own degradation. Cbl proteins are targeted to their substrates by a phosphotyrosine-binding SH2 domain. Choanoflagellates, unicellular eukaryotes that are closely related to metazoans, also contain Cbl. The tyrosine kinase complement of choanoflagellates is distinct from that of metazoans, and it is unclear if choanoflagellate Cbl is regulated similarly to metazoan Cbl. Here, we performed structure-function studies on Cbl from the choanoflagellate species Salpingoeca rosetta and found that it undergoes phosphorylation-dependent activation. We show that S. rosetta Cbl can be phosphorylated by S. rosetta Src kinase, and that it can ubiquitylate S. rosetta Src. We also compared the substrate selectivity of human and S. rosetta Cbl by measuring ubiquitylation of Src constructs in which Cbl-recruitment sites are placed in different contexts with respect to the kinase domain. Our results indicate that for both human and S. rosetta Cbl, ubiquitylation depends on proximity and accessibility, rather than being targeted toward specific lysine residues. Our results point to an ancient interplay between phosphotyrosine and ubiquitin signaling in the metazoan lineage.


Assuntos
Coanoflagelados/enzimologia , Coanoflagelados/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Cristalografia por Raios X , Drosophila melanogaster/enzimologia , Espectrometria de Massas , Modelos Moleculares , Fosforilação , Proteínas Proto-Oncogênicas c-cbl/química
17.
Mol Cell ; 67(3): 498-511.e6, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28735895

RESUMO

The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity.


Assuntos
Antígenos Comuns de Leucócito/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Timócitos/enzimologia , Domínios de Homologia de src , Animais , Ativação Enzimática , Genótipo , Células HEK293 , Humanos , Células Jurkat , Antígenos Comuns de Leucócito/química , Antígenos Comuns de Leucócito/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/deficiência , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Mutação , Fenótipo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Timócitos/imunologia , Fatores de Tempo , Transfecção
18.
J Am Chem Soc ; 137(26): 8435-49, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26038984

RESUMO

It has been suggested that the alkaline form of cytochrome c (cyt c) regulates function of this protein as an electron carrier in oxidative phosphorylation and as a peroxidase that reacts with cardiolipin (CL) during apoptosis. In this form, Met80, the native ligand to the heme iron, is replaced by a Lys. While it has become clear that the structure of cyt c changes, the extent and sequence of conformational rearrangements associated with this ligand replacement remain a subject of debate. Herein we report a high-resolution crystal structure of a Lys73-ligated cyt c conformation that reveals intricate change in the heme environment upon this switch in the heme iron ligation. The structure is surprisingly compact, and the heme coordination loop refolds into a ß-hairpin with a turn formed by the highly conserved residues Pro76 and Gly77. Repositioning of residue 78 modifies the intraprotein hydrogen-bonding network and, together with adjustments of residues 52 and 74, increases the volume of the heme pocket to allow for insertion of one of the CL acyl moieties next to Asn52. Derivatization of Cys78 with maleimide creates a solution mimic of the Lys-ligated cyt c that has enhanced peroxidase activity, adding support for a role of the Lys-ligated cyt c in the apoptotic mechanism. Experiments with the heme peptide microperoxidase-8 and engineered model proteins provide a thermodynamic rationale for the switch to Lys ligation upon perturbations in the protein scaffold.


Assuntos
Citocromos c/química , Lisina/química , Animais , Apoptose , Cardiolipinas/química , Cristalização , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Fúngicas/química , Heme/química , Cavalos , Ligação de Hidrogênio , Íons , Ferro/química , Ligantes , Oxirredução , Oxigênio/química , Peroxidases/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/química , Espectrofotometria Ultravioleta
19.
Angew Chem Int Ed Engl ; 54(20): 5874-8, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25785567

RESUMO

A general strategy was developed for the intracellular delivery of linear peptidyl ligands through fusion to a cell-penetrating peptide and cyclization of the fusion peptides via a disulfide bond. The resulting cyclic peptides are cell permeable and have improved proteolytic stability. Once inside the cell, the disulfide bond is reduced to produce linear biologically active peptides. This strategy was applied to generate a cell-permeable peptide substrate for real-time detection of intracellular caspase activities during apoptosis and an inhibitor for the CFTR-associated ligand (CAL) PDZ domain as a potential treatment for cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Domínios PDZ/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Ciclização , Células HeLa , Humanos , Ligantes , Conformação Molecular , Peptídeos/química
20.
PLoS One ; 9(8): e103650, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136860

RESUMO

PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR). Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL), and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.


Assuntos
Proteínas Interatuantes com Canais de Kv/química , Domínios PDZ , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Meia-Vida , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Ligantes , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/síntese química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA