Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 26(4): 819-823, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236576

RESUMO

The stimulator of interferon genes (STING) protein plays a crucial role in the activation of the innate immune response. Activation of STING is initiated by cyclic dinucleotides (CDNs) which prompted the community to synthesize structural analogues to enhance their biological properties. We present here the synthesis and biological evaluation of four novel CDN analogues composed of an N-acylsulfonamide linkage. These CDNs were obtained in high overall yields via the sulfo-click reaction as a key step.


Assuntos
Nucleotídeos Cíclicos , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/química , Química Click/métodos
2.
RSC Med Chem ; 14(8): 1567-1571, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37593573

RESUMO

Sulfonamides are the oldest class of antibiotics, discovered more than 80 years ago. They are still used today despite the appearance of drug resistance phenomena that limit their prescription. Since the discovery and use of the first sulfa drugs, many analogues have been synthesized in order to obtain new active molecules able to circumvent bacterial resistance. Structurally similar to sulfonamide, the N-acylsulfonamide group arouses interest in the field of medicinal chemistry due to specific physico-chemical properties. We report here the synthesis and antibacterial/antibiofilm activities of 18 sulfa drug analogues with an N-acylsulfonamide moiety. These derivatives were obtained efficiently by sulfo-click reactions between readily available thioacid and sulfonyl azide synthons.

3.
Org Biomol Chem ; 20(38): 7582-7586, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36156055

RESUMO

N-Acylsulfonamides possess an additional carbonyl function compared to their sulfonamide analogues. Due to their unique physico-chemical properties, interest in molecules containing the N-acylsulfonamide moiety and especially nucleoside derivatives is growing in the field of medicinal chemistry. The recent renewal of interest in antiviral drugs derived from nucleosides containing a sulfonamide function has led us to evaluate the therapeutic potential of N-acylsulfonamide analogues. While these compounds are usually obtained by a difficult acylation of sulfonamides, we report here the easy and efficient synthesis of 20 4'-(N-acylsulfonamide) adenosine derivatives via the sulfo-click reaction. The target compounds were obtained from thioacid and sulfonyl azide synthons in excellent yields and were evaluated as potential inhibitors of the SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14.


Assuntos
Tratamento Farmacológico da COVID-19 , Metiltransferases , Adenosina/farmacologia , Antivirais/farmacologia , Azidas , Exorribonucleases/química , Exorribonucleases/genética , Guanina , Humanos , Nucleosídeos/farmacologia , Capuzes de RNA , RNA Viral/genética , SARS-CoV-2 , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA