Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1395401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699475

RESUMO

The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.

2.
Front Microbiol ; 14: 1290441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125574

RESUMO

Introduction: Once dispersed in water, plastic materials become promptly colonized by biofilm-forming microorganisms, commonly known as plastisphere. Methods: By combining DNA sequencing and Confocal Laser Scanning Microscopy (CLSM), we investigated the plastisphere colonization patterns following exposure to natural lake waters (up to 77 days) of either petrochemical or biodegradable plastic materials (low density polyethylene - LDPE, polyethylene terephthalate - PET, polylactic acid - PLA, and the starch-based MaterBi® - Mb) in comparison to planktonic community composition. Chemical composition, water wettability, and morphology of plastic surfaces were evaluated, through Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and static contact angle analysis, to assess the possible effects of microbial colonization and biodegradation activity. Results and Discussion: The phylogenetic composition of plastisphere and planktonic communities was notably different. Pioneering microbial colonisers, likely selected from lake waters, were found associated with all plastic materials, along with a core of more than 30 abundant bacterial families associated with all polymers. The different plastic materials, either derived from petrochemical hydrocarbons (i.e., LDPE and PET) or biodegradable (PLA and Mb), were used by opportunistic aquatic microorganisms as adhesion surfaces rather than carbon sources. The Mb-associated microorganisms (i.e. mostly members of the family Burkholderiaceae) were likely able to degrade the starch residues on the polymer surfaces, although the Mb matrix maintained its original chemical structure and morphology. Overall, our findings provide insights into the complex interactions between aquatic microorganisms and plastic materials found in lake waters, highlighting the importance of understanding the plastisphere dynamics to better manage the fate of plastic debris in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA