Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896863

RESUMO

Herpes B virus (BV) is a zoonotic virus which can be transmitted from macaques to humans, which is often associated with high mortality rates. Because macaques often exhibit asymptomatic infections, individuals who come into contact with these animals face unexpected risks of BV infections. A serological test is widely performed to investigate BV infections. However, the assay's sensitivity and specificity appeared to be inadequate, and it does not necessarily indicate ongoing viral shedding. Here, we developed LAMP and qPCR assays aiming to detect BVs with a high sensitivity and specificity in various macaque species and validated them using oral swab samples collected from 97 wild cynomolgus macaques living in Thailand. Our LAMP and qPCR assays detected more than 50 and 10 copies of the target sequences per reaction, respectively. The LAMP assay could detect BV within 25 min, indicating its advantages for the rapid detection of BV. Collectively, our findings indicated that both assays developed in this study exhibit advantages and usefulness for BV surveillance and the diagnosis of BV infections in macaques. Furthermore, for the first time, we determined the partial genome sequences of BVs detected in cynomolgus macaques in Thailand. Phylogenetic analysis revealed the species-specific evolution of BV within macaques.


Assuntos
Infecções por Herpesviridae , Herpesvirus Cercopitecino 1 , Humanos , Animais , Herpesvirus Cercopitecino 1/genética , Reação em Cadeia da Polimerase em Tempo Real , Filogenia , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/veterinária , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Diagnóstico Molecular , Sensibilidade e Especificidade , Macaca fascicularis
2.
Microb Ecol ; 85(1): 298-306, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34981145

RESUMO

We investigated the prevalence of Bartonella in 123 northern bats (Eptesicus nilssonii) and their ectoparasites from Hokkaido, Japan. A total of 174 bat fleas (Ischnopsyllus needhami) and two bat bugs (Cimex japonicus) were collected from the bats. Bartonella bacteria were isolated from 32 (26.0%) of 123 bats. Though Bartonella DNA was detected in 79 (45.4%) of the bat fleas, the bacterium was isolated from only one bat flea (0.6%). The gltA sequences of the isolates were categorized into genotypes I, II, and III, which were found in both bats and their fleas. The gltA sequences of genotypes I and II showed 97.6% similarity with Bartonella strains from a Finnish E. nilssonii and a bat flea from a E. serotinus in the Netherlands. The rpoB sequences of the genotypes showed 98.9% similarity with Bartonella strain 44722 from E. serotinus in Republic of Georgia. The gltA and rpoB sequences of genotype III showed 95.9% and 96.7% similarity with Bartonella strains detected in shrews in Kenya and France, respectively. Phylogenetic analysis revealed that Bartonella isolates of genotypes I and II clustered with Bartonella strains from Eptesicus bats in Republic of Georgia and Finland, Myotis bats in Romania and the UK, and a bat flea from an Eptesicus bat in Finland. In contrast, genotype III formed a clade with B. florencae, B. acomydis, and B. birtlesii. These data suggest that northern bats in Japan harbor two Bartonella species and the bat flea serves as a potential vector of Bartonella transmission among the bats.


Assuntos
Infecções por Bartonella , Bartonella , Quirópteros , Animais , Quirópteros/microbiologia , Filogenia , Prevalência , Japão/epidemiologia , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Infecções por Bartonella/microbiologia , Variação Genética
3.
Microorganisms ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35056548

RESUMO

In the initial phase of the novel coronavirus disease (COVID-19) pandemic, a large-scale cluster on the cruise ship Diamond Princess (DP) emerged in Japan. Genetic analysis of the DP strains has provided important information for elucidating the possible transmission process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on a cruise ship. However, genome-based analyses of SARS-CoV-2 detected in large-scale cruise ship clusters other than the DP cluster have rarely been reported. In the present study, whole-genome sequences of 94 SARS-CoV-2 strains detected in the second large cruise ship cluster, which emerged on the Costa Atlantica (CA) in Japan, were characterized to understand the evolution of the virus in a crowded and confined place. Phylogenetic and haplotype network analysis indicated that the CA strains were derived from a common ancestral strain introduced on the CA cruise ship and spread in a superspreading event-like manner, resulting in several mutations that might have affected viral characteristics, including the P681H substitution in the spike protein. Moreover, there were significant genetic distances between CA strains and other strains isolated in different environments, such as cities under lockdown. These results provide new insights into the unique evolution patterns of SARS-CoV-2 in the CA cruise ship cluster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA