Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(7): e202400594, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38651347

RESUMO

The present study describes the seasonal and circadian variations of the major compounds from Lippia alba leaves. SPSS was used to identify, quantify, and associate the variations in the secondary metabolites of this species through HPLC/DAD analysis of the leaves hydroethanolic extracts of six selected L. alba specimens. For the circadian study, the samples were collected at four different daily hours in each year's season. For the seasonal study, the samples were collected monthly from the same individuals for two consecutive years (2018 and 2019). These samples were analyzed and quantified using a validated HPLC method for flavonoids, iridoids, and phenyl ethanoid glycoside. Mussaenoside, acteoside, and tricin-7-O-diglucuronide showed a moderate positive correlation between their biosynthesis and the precipitation index, while epi-loganin had a moderate negative correlation. Acteoside showed a moderate positive correlation between the minimum registered temperature and its production. Compared with previous studies, a drastic reduction (about 95 %) in the production of tricin-7-O-diglucuronide compared with previous study and this difference could be attributed to the plant's aging. Thus, the data demonstrated that lower temperatures and high rainfall could favor the production of the major L. alba active compounds (acteoside and tricin-7-O-diglucuronide) and that older plants harm their production.


Assuntos
Lippia , Folhas de Planta , Estações do Ano , Folhas de Planta/química , Folhas de Planta/metabolismo , Lippia/química , Lippia/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Extratos Vegetais/metabolismo
2.
Photochem Photobiol Sci ; 23(3): 561-573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372844

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of skin and soft tissue infections worldwide. This microorganism has a wide range of antibiotics resistance, a fact that has made the treatment of infections caused by MRSA difficult. In this sense, antimicrobial photodynamic therapy (aPDT) with natural products has emerged as a good alternative in combating infections caused by antibiotic-resistant microorganisms. The objective of the present study was to evaluate the effects of aPDT with Brazilian green propolis against intradermal MRSA infection in a murine model. Initially, 24 Balb/c mice were infected intradermally in the ears with 1.5 × 108 colony-forming units of MRSA 43300. After infection, they were separated into 4 groups (6 animals per group) and treated with the vehicle, only Brazilian green propolis, only blue LED light or with the aPDT protocol (Brazilian green propolis + blue LED light). It was observed in this study that aPDT with Brazilian green propolis reduced the bacterial load at the site of infection. Furthermore, it was able to inhibit weight loss resulting from the infection, as well as modulate the inflammatory response through greater recruitment of polymorphonuclear cells/neutrophils to the infected tissue. Finally, aPDT induced an increase in the cytokines IL-17A and IL-12p70 in the draining retromaxillary lymph node. Thus, aPDT with Brazilian green propolis proved to be effective against intradermal MRSA infection in mice, reducing bacterial load and modulating the immune response in the animals. However, more studies are needed to assess whether such effects are repeated in humans.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Própole , Humanos , Camundongos , Animais , Própole/farmacologia , Modelos Animais de Doenças , Brasil , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
3.
Chem Biodivers ; 21(3): e202301508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092696

RESUMO

Dillenia indica (Linn.) has been reported by several biological activities, including anti-inflammatory, antioxidant, antidiabetic, anti-hyperglycemic, antiproliferative, antimutagenic, anticholinesterase, and antimicrobial. In Brazilian traditional medicine, the fruits of D. indica have been used to treat general topical pain and inflammation, but with no scientific validation. Thus, aiming to study its chemical constitution and antinociceptive properties, the crude extract (CE) and fractions obtained from the fruits of D. indica were submitted to an in vivo pharmacological evaluation and a dereplication study by LC-MS/MS analysis, assisted by the Global Natural Product Social Molecular Networking (GNPS). The oral antinociceptive activity of the fruits of D. indica and the possible participation of the opioid and cannabinoid systems were demonstrated in the formalin-induced nociception model. The chemical dereplication study led us to identify several known chemical constituents, including flavonoids, such as caffeoylmalic acid, naringenin, quercetin, and kaempferol. According to literature data, our results are compatible with significant antinociceptive and anti-inflammatory activities. Therefore, the flavonoid constituents of the fruits of D. indica are probably responsible for its antioxidant, anti-inflammatory, and antinociceptive effects mediated by both opioid and cannabinoid systems, confirming its folk use in the treatment and relief of pain.


Assuntos
Analgésicos , Dilleniaceae , Analgésicos/química , Analgésicos Opioides/efeitos adversos , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Dor/tratamento farmacológico , Flavonoides/uso terapêutico
4.
Photochem Photobiol Sci ; 22(12): 2877-2890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923909

RESUMO

Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative. This work aimed to characterize the antimicrobial photodynamic activity of Brazilian green propolis, along with the key bioactive compounds associated with this activity. Initially, a scanning spectrometry was conducted to assess the wavelengths with the potential to activate green propolis. Subsequently, reference strains of methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300) and vancomycin-intermediate Staphylococcus aureus (VISA ATCC 700699) were exposed to varying concentrations of green propolis: 1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg /mL and 100 µg/mL and were stimulated by blue, green or red LED light. Finally, high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques, along with classic molecular networking analysis, was performed to identify potential bioactive molecules with photodynamic activity. Brazilian green propolis exhibits a pronounced absorption peak and heightened photo-responsiveness when exposed to blue light within the range of 400 nm and 450 nm. This characteristic reveals noteworthy significant photodynamic activity against MRSA and VISA at concentrations from 5 µg/mL. Furthermore, the propolis comprises compounds like curcumin and other flavonoids sourced from flavone, which possess the potential for photodynamic activity and other antimicrobial functions. Consequently, Brazilian green propolis holds promise as an excellent bactericidal agent, displaying a synergistic antibacterial property enhanced by light-induced photodynamic effects.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Própole , Staphylococcus aureus , Fármacos Fotossensibilizantes/farmacologia , Própole/farmacologia , Staphylococcus aureus Resistente à Vancomicina , Brasil , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Fotoquimioterapia/métodos , Testes de Sensibilidade Microbiana
6.
Nat Biotechnol ; 40(12): 1774-1779, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35798960

RESUMO

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.


Assuntos
Metadados , Espectrometria de Massas em Tandem , Humanos , Metabolômica/métodos
7.
Molecules ; 24(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466223

RESUMO

The chemical ecology of plant-insect interactions has been driving our understanding of ecosystem evolution into a more comprehensive context. Chlosyne lacinia (Lepidoptera: Nymphalidae) is an olygophagous insect herbivore, which mainly uses host plants of Heliantheae tribe (Asteraceae). Herein, plant-insect interaction between Tithonia diversifolia (Heliantheae) and Chlosyne lacinia was investigated by means of untargeted LC-MS/MS based metabolomics and molecular networking, which aims to explore its inherent chemical diversity. C. lacinia larvae that were fed with T. diversifolia leaves developed until fifth instar and completed metamorphosis to the adult phase. Sesquiterpene lactones (STL), flavonoids, and lipid derivatives were putatively annotated in T. diversifolia (leaves and non-consumed abaxial surface) and C. lacinia (feces, larvae, pupae, butterflies, and eggs) samples. We found that several furanoheliangolide-type STL that were detected in T. diversifolia were ingested and excreted in their intact form by C. lacinia larvae. Hence, C. lacinia caterpillars may have, over the years, developed tolerance mechanisms for STL throughout effective barriers in their digestive canal. Flavonoid aglycones were mainly found in T. diversifolia samples, while their glycosides were mostly detected in C. lacinia feces, which indicated that the main mechanism for excreting the consumed flavonoids was through their glycosylation. Moreover, lysophospholipids were predominately found in C. lacinia samples, which suggested that they were essential metabolites during pupal and adult stages. These findings provide insights into the natural products diversity of this plant-insect interaction and contribute to uncovering its ecological roles.


Assuntos
Produtos Biológicos/análise , Lepidópteros/fisiologia , Metabolômica/métodos , Tithonia/parasitologia , Animais , Cromatografia Líquida , Flavonoides/análise , Interações Hospedeiro-Parasita , Lactonas/análise , Lisofosfolipídeos/análise , Folhas de Planta/química , Sesquiterpenos/análise , Espectrometria de Massas em Tandem , Tithonia/química
8.
Food Chem ; 273: 186-193, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292367

RESUMO

Lippia alba is a popular Brazilian herb known as 'cidreira' that presents several chemotypes which exhibit different chemical profile and they are widely used as seasonings and traditional medicine. This work describes the seasonal variation of metabolites of polar extracts of carvone and linalool chemotypes, identified by GC-MS analyses of the essential oils. A methodology was elaborated in order to obtain a seasonal variation in the chemical composition of leaf employing HPLC-DAD. Acteoside, isoacteoside, geneposidic acid, 8-epi-loganin, mussaenoside, luteolin 7-O-glucoside, apigenin 7-O-glucuronide and tricin 7-O-diglucuronide have been isolated and identified for validation procedures and chromatographic analysis. Geneposidic acid was presented in all samples, in contrast to the 8-epi-loganin and, mussaenoside which were presented only in the carvone-chemotype. Acteoside was the major metabolite detected from July to November while tricin-7-O-diglucuronide was the major compound in all other months. Besides, phenylpropanoids are predominant in winter and flavonoids in summer season.


Assuntos
Flavonoides/análise , Glucuronídeos/análise , Lippia/química , Óleos Voláteis/análise , Óleos Voláteis/química , Monoterpenos Acíclicos , Brasil , Cromatografia Líquida de Alta Pressão , Flavonas/análise , Cromatografia Gasosa-Espectrometria de Massas , Glucosídeos/análise , Monoterpenos/análise , Fenóis/análise , Folhas de Planta/química , Reprodutibilidade dos Testes , Estações do Ano , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA