Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(40): 29151-29159, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39282066

RESUMO

Acute myocardial infarction (AMI) is a serious medical condition generally known as heart attack, which is caused by the decreased or completely blocked blood flow to a part of the heart muscle. It is a significant cause of both mortality and morbidity throughout the world. Cardiac troponin-I (cTnI) is an important biomarker at different stages of AMI and is one of the most specific and widely used cardiac skeletal muscle proteins. Delays in medical treatment and inaccurate diagnosis might be the main cause of death of AMI patients. To overcome the death rate of AMI patients, early diagnosis of this disease is crucial. In the current study, surface-enhanced Raman spectroscopy (SERS) is employed for the characterization and diagnosis of this disease using blood serum samples from 49 clinically confirmed acute myocardial infarction (AMI) patients and 17 healthy persons. Silver nanoparticles (AgNPs) are used as the SERS substrate for the recognition of characteristic SERS spectral features, differentiating between healthy and AMI-positive samples. The acute myocardial infarction-positive blood serum samples reveal remarkable differences in spectral intensities at 534, 697, 744, 835, 927, 941, 988, 1221, 1303, 1403, 1481, 1541, 1588 and 1694 cm-1. For the differentiation and quantitative analysis of the SERS spectra, multivariate chemometric tools (including principal component analysis (PCA) and partial least squares regression (PLSR)) are employed. A PLSR model established on the basis of differentiating the SERS spectral features is found to be helpful in the prediction of the levels of cardiac troponin-I (cTnI) in the blood serum samples with the root mean square error of calibration (RMSEC) value of 2.98 ng mL-1 and root mean square errors of prediction (RMSEP) value of 3.98 ng mL-1 for S7.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125065, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39217950

RESUMO

Xylanases are essential hydrolytic enzymes which break down the plant cell wall polysaccharide, xylan composed of D-xylose monomers. Surface-enhanced Raman Spectroscopy (SERS) was utilized for the characterization of interaction of xylanases with xylan at varying concentrations. The study focuses on the application of SERS for the characterization of enzymatic activity of xylanases causing hydrolysis of Xylan substrate with increase in its concentration which is substrate for this enzyme in the range of 0.2% to 1.0%. SERS differentiating features are identified which can be associated with xylanases treated with different concentrations of xylan. SERS measurements were performed using silver nanoparticles as SERS substrate to amplify Raman signal intensity for the characterization of xylan treated with xylanases. Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA) were applied to analyze the spectral data to analyze differentiation between the SERS spectra of different samples. Mean SERS spectra revealed significant differences in spectral features particularly related to carbohydrate skeletal mode and O-C-O and C-C-C ring deformations. PCA scatter plot effectively differentiates data sets, demonstrating SERS ability to distinguish treated xylanases samples and the PC-loadings plot highlights the variables responsible for differentiation. PLS-DA was employed as a quantitative classification model for treated xylanase enzymes with increasing concentrations of xylan. The values of sensitivity, specificity, and accuracy were found to be 0.98%, 0.99%, and 100% respectively. Moreover, the AUC value was found to be 0.9947 which signifies the excellent performance of PLS-DA model. SERS combined with multivariate techniques, effectively characterized and differentiated xylanase samples as a result of interaction with different concentrations of the Xylan substrate. The identified SERS features can help to characterize xylanases treated with various concentrations of xylan with promising applications in the bio-processing and biotechnology industries.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124534, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878718

RESUMO

In this study, Gordonia sp. HS126-4N was employed for dibenzothiophene (DBT) biodesulfurization, tracked over 9 days using SERS. During the initial lag phase, no significant spectral changes were observed, but after 48 h, elevated metabolic activity was evident. At 72 h, maximal bacterial population correlated with peak spectrum variance, followed by stable spectral patterns. Despite 2-hydroxybiphenyl (2-HBP) induced enzyme suppression, DBT biodesulfurization persisted. PCA and PLS-DA analysis of the SERS spectra revealed distinctive features linked to both bacteria and DBT, showcasing successful desulfurization and bacterial growth stimulation. PLS-DA achieved a specificity of 95.5 %, sensitivity of 94.3 %, and AUC of 74 %, indicating excellent classification of bacteria exposed to DBT. SERS effectively tracked DBT biodesulfurization and bacterial metabolic changes, offering insights into biodesulfurization mechanisms and bacterial development phases. This study highlights SERS' utility in biodesulfurization research, including its use in promising advancements in the field.


Assuntos
Bactéria Gordonia , Análise Espectral Raman , Tiofenos , Tiofenos/metabolismo , Tiofenos/química , Análise Espectral Raman/métodos , Bactéria Gordonia/metabolismo , Enxofre/metabolismo , Enxofre/química , Biodegradação Ambiental
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124046, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364514

RESUMO

Raman spectroscopy is reliable tool for analyzing and exploring early disease diagnosis related to body fluids, such as blood serum, which contain low molecular weight fraction (LMWF) and high molecular weight fraction (HMWF) proteins. The disease biomarkers consist of LMWF which are dominated by HMWF hence their analysis is difficult. In this study, in order to overcome this issue, centrifugal filter devices of 30 kDa were used to obtain filtrate and residue portions obtained from whole blood serum samples of control and breast cancer diagnosed patients. The filtrate portions obtained in this way are expected to contain the marker proteins of breast cancer of the size below this filter size. These may include prolactin, Microphage migration inhabitation factor (MIF), γ-Synuclein, BCSG1, Leptin, MUC1, RS/DJ-1 present in the centrifuged blood serum (filtrate portions) which are then analyzed by the SERS technique to recognize the SERS spectral characteristics associated with the progression of breast cancer in the samples of different stages as compared to the healthy ones. The key intention of this study is to achieve early-stage breast cancer diagnosis through the utilization of Surface Enhanced Raman Spectroscopy (SERS) after the centrifugation of healthy and breast cancer serum samples with Amicon ultra-filter devices of 30 kDa. The silver nanoparticles with high plasmon resonance are used as a substrate for SERS analysis. Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) models are utilized as spectral classification tools to assess and predict rapid, reliable, and non-destructive SERS-based analysis. Notably, they were particularly effective in distinguishing between different SERS spectral groups of the cancerous and non-cancerous samples. By comparing all these spectral data sets to each other PLSDA shows the 79 % accuracy, 76 % specificity, and 81 % sensitivity in samples with AUC value of AUC = 0.774 SERS has proven to be a valuable technique for the rapid identification of the SERS spectral features of blood serum and its filtrate fractions from both healthy individuals and those with breast cancer, aiding in disease diagnosis.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Soro , Prata/química , Análise de Componente Principal
5.
Photodiagnosis Photodyn Ther ; 42: 103607, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37220841

RESUMO

Background The prognosis for oral cancer patients is still very poor worldwide. Early detection and treatment therapy remain the key issue to be addressed for improved patient survival. The characteristic Raman spectral features associated with the biochemical changes in the blood serum samples can be used for the diagnosis of diseases, particularly for oral cancer. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for non-invasive and early detection of oral cancer by analyzing molecular changes in body fluids. Objectives To detect oral cavity anatomical subsites (buccal mucosa, cheek, hard palate, lips, mandible, maxilla, tongue and tonsillar region) cancers by using blood serum samples, SERS with principal component analysis is used. Material and Method SERS is employed with silver nanoparticles for the analysis and detection of oral cancer serum samples by comparing with healthy serum samples. SERS spectra are recorded by Raman instrument and preprocessed using the statistical tool. Principal component analysis (PCA) and Partial least square discriminant analysis (PLS-DA) are used to discriminate between oral cancer serum samples and control serum samples. Results Some major SERS peaks are observed at 1136 cm-1 (Phospholipids) and 1006 cm-1 (Phenylalanine) remain higher in intensities for oral cancer spectra as compared to healthy spectra. The peak at 1241 cm-1 (amide III) is observed only in oral cancer serum samples while absent in healthy serum samples. Higher protein and DNA contents were detected in SERS mean spectra of oral cancer. Moreover, PCA is used to identify the biochemical differences in the form of SERS features which is used to differentiate between oral cancer and healthy blood serum samples, while PLS-DA is used to build differentiation model of oral cancer serum samples and healthy control serum samples. PLS-DA provides successful differentiation with 94% specificity and 95.5% sensitivity. Conclusions SERS can be used for the diagnosis of oral cancer and to identify metabolic changes that occur during disease development.


Assuntos
Nanopartículas Metálicas , Neoplasias Bucais , Fotoquimioterapia , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Neoplasias Bucais/diagnóstico , Lábio , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA