Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Endocrinol (Lausanne) ; 12: 667798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108938

RESUMO

The lack of an effective medical treatment for adrenocortical carcinoma (ACC) has prompted the search for better treatment protocols for ACC neoplasms. Sorafenib, a tyrosine kinase inhibitor has exhibited effectiveness in the treatment of different human tumors. Therefore, the aim of this study was to understand the mechanism through which sorafenib acts on ACC, especially since treatment with sorafenib alone is sometimes unable to induce a long-lasting antiproliferative effect in this tumor type. The effects of sorafenib were tested on the ACC cell line H295R by evaluating cell viability, apoptosis and VEGF receptor signaling which was assessed by analyzing VE-cadherin and ß-catenin complex formation. We also tested sorafenib on an in vitro 3D cell culture model using the same cell line. Apoptosis was observed after sorafenib treatment, and coimmunoprecipitation data suggested that the drug prevents formation VEGFR-VE-cadherin and ß-catenin proteins complex. These results were confirmed both by ultrastructural analysis and by a 3D model where we observed a disaggregation of spheres into single cells, which is a crucial event that represents the first step of metastasis. Our findings suggest that although sorafenib induces apoptotic cell death a small portion of cells survive the treatment and have characteristics of a malignancy. Based on our data we recommend against the use of sorafenib in patients with ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sorafenibe/farmacologia , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Apoptose , Ciclo Celular , Proliferação de Células , Humanos , Invasividade Neoplásica , Células Tumorais Cultivadas
2.
Oncotarget ; 6(32): 32821-40, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26439802

RESUMO

Tumor-initiating cells constitute a population within a tumor mass that shares properties with normal stem cells and is considered responsible for therapy failure in many cancers. We have previously demonstrated that knockdown of the nuclear envelope component Lamin A/C in human neuroblastoma cells inhibits retinoic acid-mediated differentiation and results in a more aggressive phenotype. In addition, Lamin A/C is often lost in advanced tumors and changes in the nuclear envelope composition occur during tumor progression. Based on our previous data and considering that Lamin A/C is expressed in differentiated tissues, we hypothesize that the lack of Lamin A/C could predispose cells toward a stem-like phenotype, thus influencing the development of tumor-initiating cells in neuroblastoma. This paper demonstrates that knockdown of Lamin A/C triggers the development of a tumor-initiating cell population with self-renewing features in human neuroblastoma cells. We also demonstrates that the development of TICs is due to an increased expression of MYCN gene and that in neuroblastoma exists an inverse relationship between LMNA and MYCN expression.


Assuntos
Proliferação de Células , Lamina Tipo A/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neuroblastoma/metabolismo , Animais , Linhagem Celular Tumoral , Autorrenovação Celular , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Lamina Tipo A/genética , Masculino , Camundongos Nus , Proteína Proto-Oncogênica N-Myc , Células-Tronco Neoplásicas/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fenótipo , Interferência de RNA , Transdução de Sinais , Esferoides Celulares , Fatores de Tempo , Transfecção , Carga Tumoral
3.
Oncotarget ; 6(22): 19190-203, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26131713

RESUMO

We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Ciclopentanos/farmacologia , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Adolescente , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Stem Cell Res Ther ; 5(2): 55, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24754904

RESUMO

INTRODUCTION: The cancer stem cell model links neoplastic cells with normal stem cell biology, but little is known on how normal stem cells are transformed into cancer stem cells. METHODS: To investigate the processes underlying the transformation of normal stem cells we developed in vitro a cancer stem cell model from human amniotic and chorionic placenta membranes. In this model we studied the expression of specific stem cell molecules by flow cytometry, and genes, by real time RT-PCR. Microscopy immunfluorescence was employed to investigate the proliferative and differentiation patterns. Fluorescence microscopy and FACS were employed to investigate the proliferative and differentiation patterns. To evaluate the tumorigenic potential of our model we injected the cells into NOD.CB17-Prkdcscid/NCrHsd mice. RESULTS: Normal human stem cells from amniotic and chorionic placenta membranes were converted into neural cell lineages, under specific conditions, to form secondary neurospheres with a capacity for self-renewal. After extensive in vitro culture, these cells underwent spontaneous transformations and acquired a neuroblastoma (NB)-like phenotype with an elevated proliferative potential that is comparable to established neuroblastoma cell lines. The ability of these cells to transform their phenotype was evidenced by increased clonogenic ability in vitro; by augmented expression level of certain proliferation- and transformation-related genes (e.g., CCNA2, MYCN, ENPP2, GRIA3, and KIT); by the presence of multinucleated and hyperdiploid cells. We further demonstrated that the transformed phenotype is an NB by measuring the expression of NB-specific markers, disialoganglioside GD2 and N-Myc proteins. CONCLUSIONS: We have developed a cancer stem cell model starting from normal human stem cells derived from amniotic and chorionic placenta membranes. These cells are able to differentiate into neural cell lineages and to undergo spontaneous transformations and acquire an NB-like phenotype.


Assuntos
Transformação Celular Neoplásica/patologia , Células-Tronco Neoplásicas/citologia , Placenta/citologia , Adulto , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neuroblastoma/patologia , Placenta/metabolismo , Placenta/patologia , Gravidez
5.
PLoS One ; 7(9): e45129, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028800

RESUMO

Adrenocortical carcinoma (ACC) is a very rare endocrine tumour, with variable prognosis, depending on tumour stage and time of diagnosis. However, it is generally fatal, with an overall survival of 5 years from detection. Radiotherapy usefulness for ACC treatment has been widely debated and seems to be dependent on molecular alterations, which in turn lead to increased radio-resistance. Many studies have shown that p53 loss is an important risk factor for malignant adrenocortical tumour onset and it has been reported that somatic mutations in TP53 gene occur in 27 to 70% of adult sporadic ACCs. In this study, we investigated the role of somatic mutations of the TP53 gene in response to ionizing radiation (IR). We studied the status of p53 in two adrenocortical cell lines, H295R and SW-13, harbouring non-functioning forms of this protein, owing to the lack of exons 8 and 9 and a point mutation in exon 6, respectively. Moreover, these cell lines show high levels of p-Akt and IGF2, especially H295R. We noticed that restoration of p53 activity led to inhibition of growth after transient transfection of cells with wild type p53. Evaluation of their response to IR in terms of cell proliferation and viability was determined by means of cell count and TUNEL assay.(wt)p53 over-expression also increased cell death by apoptosis following radiation in both cell lines. Moreover, RT-PCR and Western blotting analysis of some p53 target genes, such as BCL2, IGF2 and Akt demonstrated that p53 activation following IR led to a decrease in IGF2 expression. This was associated with a reduction in the active form of Akt. Taken together, these results highlight the role of p53 in response to radiation of ACC cell lines, suggesting its importance as a predictive factor for radiotherapy in malignant adrenocortical tumours cases.


Assuntos
Carcinoma Adrenocortical/patologia , Carcinoma Adrenocortical/radioterapia , Fator de Crescimento Insulin-Like II/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Ativação Enzimática/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Marcação In Situ das Extremidades Cortadas , Fator de Crescimento Insulin-Like II/genética , Dados de Sequência Molecular , Estabilidade Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiação Ionizante , Análise de Sequência de DNA , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
6.
J Endocrinol ; 215(2): 281-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22911894

RESUMO

Infertility is a dramatic and frequent side effect in women who are undergoing chemotherapy. Actual strategies are mainly focused on oocyte cryopreservation, but this is not always a suitable option. Considering the key role that granulosa cells play in follicle life, we studied whether thyroid hormone 3,5,3'-triiodothyronine (T(3)) protects rat ovarian granulosa cells from chemotherapy-induced apoptosis. To this aim, a cell line was established from fresh isolated rat granulosa cells and named rGROV. Cells were exposed to paclitaxel (PTX) and T(3), and apoptosis, cell viability, and cell cycle distribution were analyzed under different conditions. First, the integrity of the steroidogenic pathway was demonstrated, and the presence of thyroid receptors, transporters, and deiodinases was confirmed by quantitative PCR. Cells were then exposed to PTX alone or contemporary to T(3). MTT and TUNEL assays revealed that while there was a relevant percentage of dying cells when exposed to PTX (40-60%), the percentage was sensibly reduced (20-30%) in favor of living cells if T(3) was present. Cell cycle analysis showed that cells exposed to PTX alone were first collected in G2 and then died by apoptosis; on the other hand, the T(3) granted the cells to cycle regularly and survive PTX insult. In addition, western blot and FCM analyses confirmed that caspases activation, casp 3 and Bax, were downregulated by T(3) and that Bcl2 and cyclins A and B together with cdk1 were upregulated by T(3). In conclusion, we demonstrated that thyroid hormone T(3) can counteract the lethal effect of taxol on granulosa cells.


Assuntos
Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Paclitaxel/efeitos adversos , Tri-Iodotironina/metabolismo , Animais , Proteínas de Transporte , Caspases/metabolismo , Ciclo Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , RNA/genética , RNA/metabolismo , Ratos , Ratos Wistar , Receptores dos Hormônios Tireóideos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Exp Cell Res ; 317(10): 1397-410, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21376716

RESUMO

Thiazolidinediones, specific peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands, used in type-2 diabetes therapy, show favourable effects in several cancer cells. In this study we demonstrate that the growth of H295R and SW13 adrenocortical cancer cells is inhibited by rosiglitazone, a thiazolidinediones member, even though the mechanisms underlying this effect appeared to be cell-specific. Treatment with GW9662, a selective PPAR-γ-inhibitor, showed that rosiglitazone acts through both PPAR-γ-dependent and -independent mechanisms in H295R, while in SW13 cells the effect seems to be independent of PPAR-γ. H295R cells treated with rosiglitazone undergo an autophagic process, leading to morphological changes detectable by electron microscopy and an increased expression of specific proteins such as AMPKα and beclin-1. The autophagy seems to be independent of PPAR-γ activation and could be related to an increase in oxidative stress mediated by reactive oxygen species production with the disruption of the mitochondrial membrane potential, triggered by rosiglitazone. In SW13 cells, flow cytometry analysis showed an arrest in the G0/G1 phase of the cell cycle with a decrease of cyclin E and cdk2 activity, following the administration of rosiglitazone. Our data show the potential role of rosiglitazone in the therapeutic approach to adrenocortical carcinoma and indicate the molecular mechanisms at the base of its antiproliferative effects, which appear to be manifold and cell-specific in adrenocortical cancer lines.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/patologia , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Hipoglicemiantes/farmacologia , PPAR gama/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Neoplasias do Córtex Suprarrenal/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina E/metabolismo , Imunofluorescência , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rosiglitazona
8.
Int J Oncol ; 37(2): 493-501, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20596677

RESUMO

Mitotane inhibits steroid synthesis by an action on steroidogenic enzymes, as 11beta-hydroxylase and cholesterol side chain cleavage. It also has a cytotoxic effect on the adrenocortical cells and represents a primary drug used in the adrenocortical carcinoma (ACC). H295R and SW13 cell lines were treated with mitotane 10(-5) M and ionizing radiations (IR) in combination therapy, inducing an irreversible inhibition of cell growth in both adrenocortical cancer cells. As shown in a previous report, mitotane/IR combination treatment induced a cell accumulation in the G2 phase. Here, we report the radiosensitizing properties of mitotane in two different ACC cell lines. The drug reveals the effectiveness to enhance the cytotoxic effects of IR by attenuating DNA repair and interfering on the activation of mitosis promoting factor (MPF), mainly regulated by the degradation of cyclin B1 in the mitotic process. These events may explain the inappropriate activation of cdc2, implicated in G2/M phase arrest and probably induced by the mitotane and IR in the combined treatment. Indeed, treatment with purvalanol, a cdc2-inhibitor prevents cell cycle arrest, triggering the G2/M transition. The observation that mitotane and IR in combination treatment amplifies the activation level of cyclin B/cdc2 complexes contributing to cell cycle arrest, suggests that the MPF could function as a master signal for controlling the temporal order of different mitotic events. Moreover, we report that mitotane interferes in modulation of mismatch repair (MMR) enzymes, revealing radiosensitizing drug ability.


Assuntos
Neoplasias do Córtex Suprarrenal/radioterapia , Carcinoma Adrenocortical/radioterapia , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Mitotano/farmacologia , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quinases Ciclina-Dependentes/antagonistas & inibidores , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/fisiologia , Avaliação Pré-Clínica de Medicamentos , Fase G2/efeitos dos fármacos , Fase G2/fisiologia , Humanos , Complexos Multiproteicos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Radiação Ionizante , Radiossensibilizantes/farmacologia , Células Tumorais Cultivadas
9.
J Cell Physiol ; 221(1): 242-53, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19562675

RESUMO

Numerous evidences indicate that thyroid hormones exert an important role in the regulation of the reproductive system in the adult female. Although a clear demonstration of the thyroid-ovarian interaction is still lacking, it is conceivable that thyroid hormones might have a direct role in ovarian physiology via receptors in granulosa cells. In this study we analyzed if thyroid hormone treatment could affect cell proliferation and survival of COV434 cells. To this aim cell growth experiments and cell cycle analyses by flow cytometry were performed. Secondly the T(3) survival action was tested by TUNEL assay and MD30 cleavage analysis. We showed that T(3), and not T(4), can protect ovarian granulosa cells COV434 from apoptosis, regulating cell cycle and growth in the same cells. The increase in cell growth resulted in an augmented percentage of the cells in the S phase and, in a reduction of the doubling time (18%). Subsequently apoptotic pathway induced by serum deprivation has been evaluated in the cells exposed or not to thyroid hormone treatment. The T(3) treatment was able to remarkably counteract the apoptotic process. Even at the ultrastructural level there was an evident protective effect of T(3) in the cells that, besides the maintenance of the original morphology and, the absence of basophilic cytoplasm, conserved normal junctional areas. Furthermore, the protective T(3) effect evaluated by FACS analysis in the presence of a PI3K inhibitor revealed, as also confirmed by Western Blot on pAkt, that the PI3K pathway is crucial in T(3) survival action.


Assuntos
Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Feminino , Células da Granulosa/enzimologia , Células da Granulosa/ultraestrutura , Humanos , Queratina-18/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Anticancer Res ; 26(6B): 4549-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17201177

RESUMO

BACKGROUND: Radiation therapy (RT) is a well established therapeutic modality for the treatment of solid tumors. In particular, post-operative RT is considered the standard treatment adjuvant to surgery since its ability to prolong median survival of patients with malignant astrocytoma has been shown; nevertheless the ionizing radiation (IR) treatment fails in a considerable number of astrocytoma patients. MATERIALS AND METHODS: Using an ADF human astrocytoma cell line the molecular mechanisms involved in the DNA damage induced by fractionated irradiation (FIR) and single IR treatment have been investigated. RESULTS: FIR and single IR treatment inhibited the growth of the ADF human astrocytoma cell line. FACS analysis revealed that FIR treatment, but not single IR treatment, induced growth inhibition associated with the induction of apoptosis. Apoptosis was related to caspase-3 activation and reactive oxygen species (ROS) generation. ROS formation depends on the up-regulation of the cytochrome P450 enzyme gene. On the contrary, 12.5 Gy induced necrotic cell death up-regulating the HSPD1, HSPCB, HSPCA and HSPB1 genes. CONCLUSION: FIR treatment induced cell death through caspase-3 and ROS-mediated apoptosis.


Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Caspase 3/metabolismo , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Astrocitoma/enzimologia , Astrocitoma/genética , Astrocitoma/patologia , Western Blotting , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Fracionamento da Dose de Radiação , Ativação Enzimática , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
11.
Clin Cancer Res ; 11(7): 2756-67, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15814658

RESUMO

PURPOSE: Melanoma patients have a very poor prognosis with a response rate of <1% due to advanced diagnosis. This type of tumor is particularly resistant to conventional chemotherapy and radiotherapy, and the surgery remains the principal treatment for patients with localized melanoma. For this reason, there is particular interest in the melanoma biological therapy. EXPERIMENTAL DESIGN: Using two p53 mutant melanoma models stably expressing an inducible c-myc antisense RNA, we have investigated whether Myc protein down-regulation could render melanoma cells more susceptible to radiotherapy, reestablishing apoptotic p53-independent pathway. In addition to address the role of p53 in the activation of apoptosis, we studied the effect of Myc down-regulation on radiotherapy sensitivity also in a p53 wild-type melanoma cell line. RESULTS: Myc down-regulation is able per se to induce apoptosis in a fraction of the cell population (approximately 40% at 72 hours) and in combination with gamma radiation efficiently enhances the death process. In fact, approximately 80% of apoptotic cells are evident in Myc down-regulated cells exposed to gamma radiation for 72 hours compared with approximately 13% observed after only gamma radiation treatment. Consistent with the enhanced apoptosis is the inhibition of the MLH1 and MSH2 mismatch repair proteins, which, preventing the correction of ionizing radiation mismatches occurring during DNA replication, renders the cells more prone to radiation-induced apoptosis. CONCLUSIONS: Data herein reported show that Myc down-regulation lowers the apoptotic threshold in melanoma cells by inhibiting MLH1 and MSH2 proteins, thus increasing cell sensitivity to gamma radiation in a p53-independent fashion. Our results indicate the basis for developing new antitumoral therapeutic strategy, improving the management of melanoma patients.


Assuntos
Proliferação de Células/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose/efeitos da radiação , Pareamento Incorreto de Bases , Western Blotting , Proteínas de Transporte , Caspase 3 , Caspases/metabolismo , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Análise Mutacional de DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta à Radiação , Regulação para Baixo , Citometria de Fluxo , Raios gama , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melanoma/radioterapia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Antissenso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2
12.
Biochem J ; 389(Pt 1): 233-40, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15740460

RESUMO

Peroxynitrite mediates the oxidation of the sulphinic group of both HTAU (hypotaurine) and CSA (cysteine sulphinic acid), producing the respective sulphonates, TAU (taurine) and CA (cysteic acid). The reaction is associated with extensive oxygen uptake, suggesting that HTAU and CSA are oxidized by the one-electron transfer mechanism to sulphonyl radicals, which may initiate an oxygen-dependent radical chain reaction with the sulphonates as final products. Besides the one-electron mechanism, HTAU and CSA can be oxidized by the two-electron pathway, leading directly to sulphonate formation without oxygen consumption. The apparent second-order rate constants for the direct reaction of peroxynitrite with HTAU and CSA at pH 7.4 and 25 degrees C are 77.4+/-5 and 76.4+/-9 M(-1).s(-1) respectively. For both sulphinates, the apparent second-order rate constants increase sharply with decrease in pH, and the sigmoidal curves obtained are consistent with peroxynitrous acid as the species responsible for sulphinate oxidation. The kinetic data, together with changes in oxygen uptake, sulphinate depletion, sulphonate production, and product distribution of nitrite and nitrate, suggest that oxidation of sulphinates by peroxynitrite may take place by the two reaction pathways whose relative importance depends on reagent concentrations and pH value. In the presence of bicarbonate, the direct reaction of sulphinates with peroxynitrite is inhibited and the oxidative reaction probably involves only the radicals *NO2 and CO3*-, generated by decomposition of the peroxynitrite-CO2 adduct.


Assuntos
Cisteína/análogos & derivados , Oxidantes/química , Ácido Peroxinitroso/química , Taurina/análogos & derivados , Bicarbonatos/química , Cisteína/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Oxigênio/química , Sulfatos/análise , Sulfatos/química , Ácidos Sulfínicos/química , Taurina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA