Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38693454

RESUMO

BACKGROUND: Circulating-tumor DNA (ctDNA) and prostate-specific membrane antigen (PSMA) ligand positron-emission tomography (PET) enable minimal-invasive prostate cancer (PCa) detection and survival prognostication. The present study aims to compare their tumor discovery abilities and prognostic values. METHODS: One hundred thirty men with confirmed PCa (70.5 ± 8.0 years) who underwent [68Ga]Ga-PSMA-11 PET/CT (184.8 ± 19.7 MBq) imaging and plasma sample collection (March 2019-August 2021) were included. Plasma-extracted cell-free DNA was subjected to whole-genome-based ctDNA analysis. PSMA-positive tumor lesions were delineated and their quantitative parameters extracted. ctDNA and PSMA PET/CT discovery rates were compared, and the prognostic value for overall survival (OS) was evaluated. RESULTS: PSMA PET discovery rates according to castration status and PSA ranges did differ significantly (P = 0.013, P < 0.001), while ctDNA discovery rates did not (P = 0.311, P = 0.123). ctDNA discovery rates differed between localized and metastatic disease (P = 0.013). Correlations between ctDNA concentrations and PSMA-positive tumor volume (PSMA-TV) were significant in all (r = 0.42, P < 0.001) and castration-resistant (r = 0.65, P < 0.001), however not in hormone-sensitive patients (r = 0.15, P = 0.249). PSMA-TV and ctDNA levels were associated with survival outcomes in the Logrank (P < 0.0001, P < 0.0001) and multivariate Cox regression analysis (P = 0.0023, P < 0.0001). CONCLUSION: These findings suggest that PSMA PET imaging outperforms ctDNA analysis in detecting prostate cancer across the whole spectrum of disease, while both modalities are independently highly prognostic for survival outcomes.

2.
Lancet Digit Health ; 6(4): e251-e260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519153

RESUMO

BACKGROUND: The diagnosis of cardiac amyloidosis can be established non-invasively by scintigraphy using bone-avid tracers, but visual assessment is subjective and can lead to misdiagnosis. We aimed to develop and validate an artificial intelligence (AI) system for standardised and reliable screening of cardiac amyloidosis-suggestive uptake and assess its prognostic value, using a multinational database of 99mTc-scintigraphy data across multiple tracers and scanners. METHODS: In this retrospective, international, multicentre, cross-tracer development and validation study, 16 241 patients with 19 401 scans were included from nine centres: one hospital in Austria (consecutive recruitment Jan 4, 2010, to Aug 19, 2020), five hospital sites in London, UK (consecutive recruitment Oct 1, 2014, to Sept 29, 2022), two centres in China (selected scans from Jan 1, 2021, to Oct 31, 2022), and one centre in Italy (selected scans from Jan 1, 2011, to May 23, 2023). The dataset included all patients referred to whole-body 99mTc-scintigraphy with an anterior view and all 99mTc-labelled tracers currently used to identify cardiac amyloidosis-suggestive uptake. Exclusion criteria were image acquisition at less than 2 h (99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid, 99mTc-hydroxymethylene diphosphonate, and 99mTc-methylene diphosphonate) or less than 1 h (99mTc-pyrophosphate) after tracer injection and if patients' imaging and clinical data could not be linked. Ground truth annotation was derived from centralised core-lab consensus reading of at least three independent experts (CN, TT-W, and JN). An AI system for detection of cardiac amyloidosis-associated high-grade cardiac tracer uptake was developed using data from one centre (Austria) and independently validated in the remaining centres. A multicase, multireader study and a medical algorithmic audit were conducted to assess clinician performance compared with AI and to evaluate and correct failure modes. The system's prognostic value in predicting mortality was tested in the consecutively recruited cohorts using cox proportional hazards models for each cohort individually and for the combined cohorts. FINDINGS: The prevalence of cases positive for cardiac amyloidosis-suggestive uptake was 142 (2%) of 9176 patients in the Austrian, 125 (2%) of 6763 patients in the UK, 63 (62%) of 102 patients in the Chinese, and 103 (52%) of 200 patients in the Italian cohorts. In the Austrian cohort, cross-validation performance showed an area under the curve (AUC) of 1·000 (95% CI 1·000-1·000). Independent validation yielded AUCs of 0·997 (0·993-0·999) for the UK, 0·925 (0·871-0·971) for the Chinese, and 1·000 (0·999-1·000) for the Italian cohorts. In the multicase multireader study, five physicians disagreed in 22 (11%) of 200 cases (Fleiss' kappa 0·89), with a mean AUC of 0·946 (95% CI 0·924-0·967), which was inferior to AI (AUC 0·997 [0·991-1·000], p=0·0040). The medical algorithmic audit demonstrated the system's robustness across demographic factors, tracers, scanners, and centres. The AI's predictions were independently prognostic for overall mortality (adjusted hazard ratio 1·44 [95% CI 1·19-1·74], p<0·0001). INTERPRETATION: AI-based screening of cardiac amyloidosis-suggestive uptake in patients undergoing scintigraphy was reliable, eliminated inter-rater variability, and portended prognostic value, with potential implications for identification, referral, and management pathways. FUNDING: Pfizer.


Assuntos
Amiloidose , Cardiomiopatias , Humanos , Amiloidose/diagnóstico por imagem , Amiloidose/metabolismo , Inteligência Artificial , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/metabolismo , Prognóstico , Cintilografia , Compostos Radiofarmacêuticos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA