RESUMO
Deciduous trees mostly rely on non-structural carbohydrates (NSC-soluble carbohydrates and starch) stored prior to dormancy to sustain both spring bloom and the initial phase of spring growth prior to the transition of leaves from sink to source. Winter management of NSC, their loss due to respiration, reallocation patterns and remobilization during spring, seems to be key to a timely and synchronous bloom. To assess tree dependence on NSC during dormancy, we tested whether the interruption of local branch NSC accumulation prior to dormancy by defoliation and the interruption of NSC translocation by phloem girdling influence spring phenology in three major deciduous Mediterranean nut crop species: Prunus dulcis (Mill.) D.A Webb, a hybrid between Pistacia integerrima (J. L. Stewart ex Brandis) and P. atlantica Desf. (referred to as P. integerrima), and Juglans regia L. Defoliation treatments had different effects on NSC concentration in different species depending on the time of application. However, despite the significant initial impact (increase or decrease of NSC concentration), with time this impact diminished resulting in overall similar concentrations between control and defoliated branches suggesting the presence of NSC reallocation during dormancy. Phloem girdling in P. dulcis and P. integerrima resulted in reduced export activity and greater NSC concentrations, while in J. regia girdling resulted in lower NSC concentrations, indicating that this species requires a net import of NSC during dormancy. Bud break was distinctly delayed by both defoliation and phloem girdling in all the three species, providing evidence of the significant roles that fall NSC accumulation and winter NSC management play in priming trees for spring growth resumption.
Assuntos
Açúcares , Árvores , Carboidratos , Nozes , Folhas de Planta , Estações do AnoRESUMO
Despite non-structural carbohydrate (NSC) importance for tree productivity and resilience, little is known about their seasonal regulations and trade-off with growth and reproduction. We characterize the seasonal dynamics of NSC in relation to the aboveground phenology and temporal growth patterns of three deciduous Mediterranean species: almond (Prunus dulcis (Mill.) D. A. Webb), walnut (Juglans regia L.) and pistachio (Pistacia vera L.). Seasonal dynamics of NSC were synchronous between wood tissues from trunk, branches and twigs. Almond had almost identical levels and patterns of NSC variation in twigs, branches and trunks whereas pistachio and walnut exhibited clear concentration differences among plant parts whereby twigs had the highest and most variable NSC concentration, followed by branches and then trunk. While phenology had a significant influence on NSC seasonal trends, there was no clear trade-off between NSC storage and growth suggesting that both were similarly strong sinks for NSC. A temporal trade-off observed at the seasonal scale was influenced by the phenology of the species. We propose that late senescing species experience C allocation trade-off at the end of the growing season because of C-limiting thermal conditions and priority allocation to storage in order to survive winter.
Assuntos
Carboidratos/análise , Juglans/metabolismo , Pistacia/metabolismo , Prunus dulcis/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Mudança Climática , Juglans/crescimento & desenvolvimento , Modelos Logísticos , Região do Mediterrâneo , Pistacia/crescimento & desenvolvimento , Prunus dulcis/crescimento & desenvolvimento , Estações do Ano , TemperaturaRESUMO
MAIN CONCLUSION: During spring, bud growth relies on long-distance transport of remotely stored carbohydrates. A new hypothesis suggests this transport is achieved by the interplay of xylem and phloem. During the spring, carbohydrate demand of developing buds often exceeds locally available storage, thus requiring the translocation of sugars from distant locations like limbs, stems and roots. Both the phloem and xylem have the capacity for such long-distance transport, but their functional contribution is unclear. To address this ambiguity, the spatial and temporal dynamics of carbohydrate availability in extension shoots of Juglans regia L. were analyzed. A significant loss of extension shoot carbohydrates in remote locations was observed while carbohydrate availability near the buds remained unaffected. This pattern of depletion of carbohydrate reserves supports the notion of long-distance translocation. Girdling and dye perfusion experiments were performed to assess the role of phloem and xylem in the transport of carbohydrate and water towards the buds. Girdling caused a decrease in non-structural carbohydrate concentration above the point of girdling and an unexpected concurrent increase in water content associated with impeded xylem transport. Based on experimental observations and modeling, we propose a novel mechanism for maintenance of spring carbohydrate translocation in trees where xylem transports carbohydrates and this transport is maintained with the recirculation of water by phloem Münch flow. Phloem Münch flow acts as a pump for generating water flux in xylem and allows for transport and mobilization of sugars from distal locations prior to leaves photosynthetic independence and in the absence of transpiration.