Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 174: 106870, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038698

RESUMO

Specialized pro-resolving mediators (SPMs) are oxidized lipid mediators that have been shown to resolve inflammation in cellular and animal models as well as humans. SPMs and their biological precursors are even commercially available as dietary supplements. It has been understood for more than forty years that pro-inflammatory oxidized lipid mediators, including prostaglandins and leukotrienes, are rapidly inactivated via metabolism. Studies on the metabolism of SPMs are, however, limited. Herein, we report that resolvin D5 (RvD5) and resolvin D1 (RvD1), well-studied SPMs, are readily metabolized by human liver microsomes (HLM) to glucuronide conjugated metabolites. We further show that this transformation is catalyzed by specific uridine 5'-diphospho-glucuronosyltransferase (UGT) isoforms. Additionally, we demonstrate that RvD5 and RvD1 metabolism by HLM is influenced by non-steroidal anti-inflammatory drugs (NSAIDs), which can act as UGT inhibitors through cyclooxygenase-independent mechanisms. The results from these studies highlight the importance of considering metabolism, as well as factors that influence metabolic enzymes, when seeking to quantify SPMs in vivo.

2.
Redox Biol ; 70: 103020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211441

RESUMO

UDP-glucuronosyltransferases (UGTs) catalyze the conjugation of glucuronic acid with endogenous and exogenous lipophilic small molecules to facilitate their inactivation and excretion from the body. This represents approximately 35 % of all phase II metabolic transformations. Fatty acids and their oxidized eicosanoid derivatives can be metabolized by UGTs. F2-isoprostanes (F2-IsoPs) are eicosanoids formed from the free radical oxidation of arachidonic acid. These molecules are potent vasoconstrictors and are widely used as biomarkers of endogenous oxidative damage. An increasing body of evidence demonstrates the efficacy of measuring the ß-oxidation metabolites of F2-IsoPs rather than the unmetabolized F2-IsoPs to quantify oxidative damage in certain settings. Yet, the metabolism of F2-IsoPs is incompletely understood. This study sought to identify and characterize novel phase II metabolites of 15-F2t-IsoP and 5-epi-5-F2t-IsoP, two abundantly produced F2-IsoPs, in human liver microsomes (HLM). Utilizing liquid chromatography-mass spectrometry, we demonstrated that glucuronide conjugates are the major metabolites of these F2-IsoPs in HLM. Further, we showed that these molecules are metabolized by specific UGT isoforms. 15-F2t-IsoP is metabolized by UGT1A3, 1A9, and 2B7, while 5-epi-5-F2t-IsoP is metabolized by UGT1A7, 1A9, and 2B7. We identified, for the first time, the formation of intact glucuronide F2-IsoPs in human urine and showed that F2-IsoP glucuronidation is reduced in people supplemented with eicosapentaenoic and docosahexaenoic acids for 12 weeks. These studies demonstrate that endogenous F2-IsoP levels can be modified by factors other than redox mechanisms.


Assuntos
F2-Isoprostanos , Isoprostanos , Humanos , Glucuronídeos , Estresse Oxidativo , Eicosanoides , Difosfato de Uridina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA