Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Med J Islam Repub Iran ; 37: 40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284692

RESUMO

Background: Neurostimulation is one of the new therapeutic approaches in patients with drug-resistant epilepsy, and despite its high efficiency, its mechanism of action is still unclear. On the one hand, electrical stimulation in the human brain is immoral; on the other hand, the creation of the epilepsy model in laboratory animals affects the entire brain network. As a result, one of the ways to achieve the neurostimulation mechanism is to use epileptiform activity models In vitro. In vitro models, by accessing the local network from the whole brain, we can understand the mechanisms of action of neurostimulation. Methods: A literature search using scientific databases including PubMed, Google Scholar, and Scopus, using "Neurostimulation" and "epileptiform activity" combined with "high-frequency stimulation", " low-frequency stimulation ", and "brain slices" as keywords were conducted, related concepts to the topic gathered and are used in this paper. Results: Electrical stimulation causes neuronal depolarization and the release of GABAA, which inhibits neuronal firing. Also, electrical stimulation inhibits the nervous tissue downstream of the stimulation site by preventing the passage of nervous activity from the upstream to the downstream of the axon. Conclusion: Neurostimulation techniques consisting of LFS and HFS have a potential role in treating epileptiform activity, with some studies having positive results. Further investigations with larger sample sizes and standardized outcome measures can be conducted to validate the results of previous studies.

2.
Cytokine ; 169: 156248, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307689

RESUMO

BACKGROUND: One of the regulators in severe acute respiratory syndrome coronavirus2 (SARS-CoV2) infection is miRNAs. In COVID-19 patients, immunological responses to SARS-CoV2 infection may be impacted by miR-155, a miRNA associated to inflammation. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) of 50 confirmed COVID-19 patients /Healthy Controls (HCs) was isolated by Ficoll. The frequency of T helper 17 and regulatory T cells was analyzed by flowcytometry. The RNA was extracted from each sample and after synthesis of c-DNA, the relative expression of miR-155, suppressor of cytokine signaling (SOCS-1), Signal transducer and activator of transcription 3(STAT3), and Fork Head Box Protein 3 (FoxP3) was evaluated by real-time PCR. The protein level of STAT3, FoxP3 and RORγT in the isolated PBMCs measured by western blotting. The serum level of IL-10, TGF-ß, IL-17 and IL21 was assessed by ELISA method. RESULTS: The population of Th17 cells showed a significant rise, whereas Treg cells reduced in COVID-19 cases. The master transcription factor of Treg (FoxP3) and Th17 (RORγT) relative expression showed the same pattern as flowcytometry. STAT3 level of expression at RNA and protein level increased in COVID-19 cases. FOXP3 and SOCS-1 proteins were down-regulated. The relative expression of miR-155, up-regulated in PBMC of COVID-19 patients and revealed a negative correlation with SOCS-1. The serum cytokine profile showed a reduction in TGF-ß, on the other hand an increase was seen in IL-17, IL-21 and IL-10 in COVID-19 cases toward control group. CONCLUSION: Based on the studies conducted in this field, it can be suggested that Th17/Treg in covid-19 patients can be affected by miR-155 and it can be considered a valuable diagnostic and prognostic factor in this disease.


Assuntos
COVID-19 , MicroRNAs , Proteína 1 Supressora da Sinalização de Citocina , Linfócitos T Reguladores , Células Th17 , Humanos , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA Viral , SARS-CoV-2/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo
3.
SAGE Open Med Case Rep ; 11: 2050313X231181171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342423

RESUMO

Autologous fibroblast transplantation has been proven to be a promising method in wound healing with no side effects. This is the first study aimed to determine the efficacy and safety of autologous fibroblast cell injection to the atrophic scar caused by cutaneous leishmaniasis as an endemic disease in many middle-eastern countries. It causes chronic skin lesions and permanently disfiguring scars. Autologous fibroblasts were obtained from the patient's ear skin and were injected intradermally twice at 2-month intervals. Outcomes were measured using ultrasonography, VisioFace, and Cutometer. No adverse reaction was observed. The results showed improvements in epidermal thickness and density, melanin level, and skin lightening. Moreover, the skin elasticity in the scar area increased after the second transplantation. No improvement was observed in dermal thickness and density. A longer follow-up with more patients is recommended to investigate the effectiveness of fibroblast transplantation better.

4.
Macromol Biosci ; 23(9): e2300033, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37120148

RESUMO

Burn is one of the physically debilitating injuries that can be potentially fatal; therefore, providing appropriate coverage in order to reduce possible mortality risk and accelerate wound healing is mandatory. In this study, collagen/exo-polysaccharide (Col/EPS 1-3%) scaffolds are synthesized from rainbow trout (Oncorhynchus mykiss) skins incorporated with Rhodotorula mucilaginosa sp. GUMS16, respectively, for promoting Grade 3 burn wound healing. Physicochemical characterizations and, consequently, biological properties of the Col/EPS scaffolds are tested. The results show that the presence of EPS does not affect the minimum porosity dimensions, while raising the EPS amount significantly reduces the maximum porosity dimensions. Thermogravimetric analysis (TGA), FTIR, and tensile property results confirm the successful incorporation of the EPS into Col scaffolds. Furthermore,the biological results show that the increasing EPS does not affect Col biodegradability and cell viability, and the use of Col/EPS 1% on rat models displays a faster healing rate. Finally, histopathological examination reveals that the Col/EPS 1% treatment accelerates wound healing, through greater re-epithelialization and dermal remodeling, more abundant fibroblast cells and Col accumulation. These findings suggest that Col/EPS 1% promotes dermal wound healing via antioxidant and anti-inflammatory activities, which can be a potential medical process in the treatment of burn wounds.


Assuntos
Queimaduras , Oncorhynchus mykiss , Ratos , Animais , Cicatrização , Colágeno/farmacologia , Colágeno/química , Queimaduras/tratamento farmacológico
5.
Drug Deliv Transl Res ; 13(6): 1766-1779, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36701113

RESUMO

Skin tissue engineering has progressed from simple wound dressings to biocompatible materials with desired physico-chemical properties that can deliver regenerative biomolecules. This study describes using a novel biomimetic hybrid scaffold of decellularized dermis/collagen fibers that can continuously deliver stromal cell-derived factor-1 alpha (SDF-1α) for skin regeneration. In diabetic rat models, the idea that sustained SDF-1α infusion could increase the recruitment of CXCR4-positive cells at the injury site and improve wound regeneration was investigated. The morphology of the scaffold, its biocompatibility, and the kinetics of SDF-1 release were all assessed. SDF-1α was successfully incorporated into collagen nanofibers, resulting in a 200-h continuous release profile. The microscopic observations exhibited that cells are attached and proliferated on proposed scaffolds. As evaluated by in vivo study and histological examination, fabricated scaffold with SDF-1α release capacity exhibited a remarkably more robust ability to accelerate wound regeneration than the control group. Besides, the SDF-1α-loaded scaffold demonstrated functional effects on the proliferation and recruitment of CD31 and CXCR4-positive cells in the wound bed. Additionally, no adverse effects such as hyperplasia or scarring were found during the treatment period. It may be concluded that the fabricated hybrid scaffold based on natural polymer opens up a new option for topical administration of bioactive molecules. We believe the SDF-1α-loaded hybrid scaffold has promise for skin tissue engineering.


Assuntos
Quimiocina CXCL12 , Nanofibras , Ratos , Animais , Nanofibras/química , Alicerces Teciduais/química , Colágeno , Derme
6.
Cell Tissue Bank ; 24(3): 639-650, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36527565

RESUMO

Regenerative medicine is a subdivision of medicine that improves methods to regrow, repair or replace unhealthy cells and tissues to return to normal function. Cell therapy, gene therapy, nanomedicine as choices used to cure neurodegenerative disease. Recently, studies related to the treatment of neurodegenerative disorders have been focused on stem cell therapy and Nano-drugs beyond other than regenerative medicine. Hence, by data from experimental models and clinical trials, we review the impact of stem cell therapy, gene therapy, and nanomedicine on the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). Indeed, improved knowledge and continued research on gene therapy and nanomedicine in treating Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis lead to advancements in effective and practical treatments for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/terapia , Doença de Alzheimer/terapia , Medicina Regenerativa , Esclerose Lateral Amiotrófica/tratamento farmacológico
7.
Brain Inj ; 37(1): 63-73, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36408966

RESUMO

INTRODUCTION: Insomnia is a serious problem after traumatic brain injury (TBI) and partially improves via sleeping pills. We investigated the efficacy of transcranial direct current stimulation (tDCS) with a focus on the role of age and gender. MATERIALS AND METHODS: In a randomized double-blind clinical trial, 60 eligible TBI-induced insomnia patients were assigned to real and sham tDCS groups and were treated for three weeks. Sham but not real tDCS took sleeping pills for the first three weeks of the study and then used the placebo until the end of the study. The placebo was used by the real-tDCS group throughout the study. Sleep quality and insomnia severity were respectively evaluated by Pittsburg Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) at three time points. RESULTS: Real tDCS group reported lower mean ISI and PSQI scores at 3 weeks post treatment onset and maintained this decline for six weeks post treatment onset (P < 0.001). In younger participants and those identified as men, the treatment-induced attenuation of the mean PSQI score was reported higher and more lasting in real than sham tDCS groups. CONCLUSION: Gender and age-specific tDCS protocols may be warranted to optimize the therapeutic effect of tDCS.


Assuntos
Lesões Encefálicas Traumáticas , Distúrbios do Início e da Manutenção do Sono , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Método Duplo-Cego , Distúrbios do Início e da Manutenção do Sono/etiologia , Distúrbios do Início e da Manutenção do Sono/terapia , Qualidade do Sono , Estimulação Transcraniana por Corrente Contínua/métodos
8.
Am J Reprod Immunol ; 89(3): e13644, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36317442

RESUMO

PROBLEM: Women with PCOS have a reduced total antioxidant level in addition to higher oxidative stress. Quercetin is a flavonol-type antioxidant that may be found in many foods. Does quercetin affect inflammatory and hormonal factors and clinical outcomes in PCOS patients? METHOD OF STUDY: Seventy-two women with PCOS were randomly allocated to one of two intervention groups, and each received a daily dosage of 500 mg of Quercetin for the intervention group or a placebo for the control group for a period of 40 days from the start of the menstrual cycle until the day of ovulation. Serum levels of IL-6, TNF-alpha, LH, FSH, and AMH were measured using ELISA. In addition, oocyte and embryo grade before IVF and pregnancy rate have been examined. RESULTS: LH levels reduce significantly in the quercetin group (4.351.62 at baseline to 3.061.43 after 3 months) (p = .029). The results indicated that Quercetin significantly decreased TNF alpha levels in comparison to the pretest (p = .008). Following capsule administration, IL-6 levels significantly decreased in the quercetin group (p = .001). Except for Δ LH, ΔIL6, and ΔFSH, there was no significant difference in any of the hormones and inflammations parameter changes. CONCLUSION: Quercetin consumption causes improvement in oocyte and embryo grade and the pregnancy rate in PCOS patients. As a result, regular consumption of Quercetin has been shown to decrease inflammatory and LH parameters, making it beneficial for the management of PCOS and related diseases.


Assuntos
Síndrome do Ovário Policístico , Gravidez , Humanos , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Quercetina/uso terapêutico , Antioxidantes/uso terapêutico , Interleucina-6 , Inflamação/tratamento farmacológico , Resultado da Gravidez
9.
BMC Neurosci ; 23(1): 65, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384473

RESUMO

BACKGROUND: One of the most serious nervous system diseases is spinal cord injury(SCI), which is increasing for various reasons. Although no definitive treatment has yet been identified for SCI, one possible treatment is adipose-derived stem cells(ADSCs). However, a key issue in transplantation is improving cells' survival and function in the target tissue. Melatonin(MT) hormone with antioxidant properties can prolong cell survival and improve cell function. This study investigates the pre-conditioning of ADSCs with melatonin for enhancing the engraftment and neurological function of rats undergoing SCI. METHODS: 42 male Sprague-Dawley rats were divided into six groups, including Control, Sham, Model, Vehicle, and Lesion treatments A and B. After acquiring white adipose tissue, stem cells were evaluated by flow cytometry. SCI was then applied in Model, Vehicle, A, and B groups. Group A and B received ADSCs and ADSCs + melatonin, respectively, 1 week after SCI, but the vehicle received only an intravenous injection for simulation; The other groups were recruited for the behavioral test. Immunohistochemistry(IHC) was used to assess the engraftment and differentiation of ADSCs in the SCI site. Basso, Beattie, and Bresnahan's score was used to evaluate motor function between the six groups. RESULTS: Histological studies and cell count confirmed ADSCs implantation at the injury site, which was higher in the MT-ADSCs (P < 0.001). IHC revealed the differentiation of ADSCs and MT-ADSCs into neurons, astrocytes, and oligodendrocyte lineage cells, which were higher in MT-ADSCs. Functional improvement was observed in SCI + ADSCs and SCI + MT-ADSCs groups. CONCLUSION: The pre-conditioning of ADSCs with melatonin positively affects engraftment and neuronal differentiation in SCI but does not impact performance improvement compared to the ADSCs.


Assuntos
Melatonina , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Masculino , Ratos , Animais , Melatonina/farmacologia , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Modelos Animais de Doenças
10.
Diabetol Metab Syndr ; 14(1): 107, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906673

RESUMO

BACKGROUND: Coronary Heart Disease (CHD) is the leading cause of death in industrialized countries. There is currently no direct relation between CHD and type 2 diabetes mellitus (T2D), one of the major modifiable risk factors for CHD. This study was carried out for genes expression profiling of T2D associated genes to identify related biological processes/es and modulated signaling pathway/s of male subjects with CHD. METHOD: the subjects were divided into four groups based on their disease, including control, type 2 diabetes mellitus (T2D), CHD, and CHD + T2D groups. The RNA was extracted from their blood, and RT2 Profiler™ PCR Array was utilized to determine gene profiling between groups. Finally, the PCR Array results were validated by using Q-RT-PCR in a more extensive and independent population. RESULT: PCR Array results revealed that the T2D and T2D + CHD groups shared 11 genes significantly up-regulated in both groups. Further analysis showed that the mRNA levels of AKT2, IL12B, IL6, IRS1, IRS2, MAPK14, and NFKB1 increased. Consequently, the mRNA levels of AQP2, FOXP3, G6PD, and PIK3R1 declined in the T2D + CHD group compared to the T2D group. Furthermore, in silico analysis indicated 36 Gene Ontology terms and 59 signaling pathways were significantly enriched in both groups, which may be a culprit in susceptibility of diabetic patients to CHD development. CONCLUSION: Finally, the results revealed six genes as a hub gene in altering various biological processes and signaling pathways. The expression trend of these identified genes might be used as potential markers and diagnostic tools for the early identification of the vulnerability of T2D patients to develop premature CHD.

11.
Front Med ; 16(3): 358-377, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35687278

RESUMO

According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Materiais Biocompatíveis/química , Humanos , Ácido Hialurônico , Medicina Regenerativa , Alicerces Teciduais/química
12.
Int J Biol Macromol ; 196: 194-203, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34852259

RESUMO

Fabrication of scaffolds with enhanced mechanical properties and desirable cellular compatibility is critical for numerous tissue engineering applications. This study was aimed at fabrication and characterization of a nanofiber skin substitute composed of collagen (Col)/sodium alginate (SA)/ polyethylene oxide (PEO)/Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides (EPS) were prepared using the biaxial electrospinning technique. This study used collagen extracted from the bovine tendon as a natural scaffold, sodium alginate as an absorber of excess wound fluids, and GUMS16 produced exopolysaccharides as an antioxidant. Collagen was characterized using FTIR and EDS analyses. The cross-linked nanofibers were characterized by SEM, FTIR, tensile, contact-angle, swelling test, MTT, and cell attachment techniques. The average diameter of Col nanofiber was 910 ± 89 nm. The Col and Col-SA/PEO non-woven mats' water contact angle measurement was 41.6o and 56.4o, Col/EPS1%, Col/EPS2%, Col-SA/PEO + EPS1%, and Col-SA/PEO + EPS2% were 61.4o, 58.3o, 38.5o, and 50.6o, respectively. Cell viability of more than 100% was shown in Col-SA/PEO + EPS nanofibers. Also, SEM images of cells on nanofiber scaffolds demonstrated that all nanofibers incorporated with GUMS16-produced EPS have good cell growth and proliferation. The acquired results expressed that the GUMS16-produced EPS can be considered a novel biomacromolecule in electrospun fibers that increase cell viability and proliferation.


Assuntos
Alginatos/química , Colágeno/química , Polissacarídeos Fúngicos/química , Nanofibras/química , Rhodotorula/química , Animais , Materiais Biocompatíveis/química , Curativos Biológicos , Fenômenos Químicos , Fenômenos Mecânicos , Análise Espectral , Engenharia Tecidual , Cicatrização
13.
Basic Clin Neurosci ; 12(3): 315-323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917291

RESUMO

INTRODUCTION: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. METHODS: In the current study, we set out to investigate the differentiation properties of human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) into cholinergic-like cells by two morphogens of Retinoic Acid (RA) and Sonic Hedgehog (Shh) using a three-step in vitro procedure. The results were evaluated using real-time PCR, flow cytometry, and immunocytochemistry for two weeks. RESULTS: Our data showed that the cells could express cholinergic specific markers, including Islet-1, Acetylcholinesterase (AChE), SMI-32, and Nestin, at mRNA and protein levels. We could also quantitatively evaluate the expression of Islet-1, AChE, and Nestin at 14 days post-induction using flow cytometry. CONCLUSION: Human AD-MSCs are potent cells to differentiate into cholinergic-like cells in the presence of RA and Shh through a three-step protocol. Thus, they could be a suitable cell candidate for the regeneration of cholinergic-associated diseases. However, more functional and electrophysiological analyses are needed in this regard.

14.
Brain Res ; 1770: 147624, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419443

RESUMO

Kernicterus is a leading cause of neonatal death throughout the world, especially in low-middle-income countries. It is developed by an unconjugated hyperbilirubinemia in the blood and brain tissue, triggering pathological processes that spawn neurotoxicity and neurodegeneration. However, the biological mechanism (s) of bilirubin-induced neurotoxicity and Kernicterus development remain to be well elucidated. Likewise, a practical therapeutic approach for human Kernicterus has yet to be found. Undoubtedly, animal models of Kernicterus can be helpful in the identification of underlying biological processes of hyperbilirubinemia evolution to Kernicterus, as well as the evaluation of various treatments efficacy in preclinical studies. More importantly, establishing an animal model that can mimic the Kernicterus and its behavioral, neuro-histological, and hematological manifestations is a severe priority in preclinical studies. So far, several Kernicterus animal models have been established that could partially mimic one or more clinical and paraclinical signs of human Kernicterus. The present study aimed to review all methods modeling Kernicterus with a focus on their potentials and shortcomings and subsequently provide the optimal methods for an ideal Kernicterus animal model.


Assuntos
Encéfalo/patologia , Kernicterus/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Camundongos , Ratos
15.
Regen Ther ; 18: 12-20, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33816722

RESUMO

BACKGROUND: The present study focused on burning as one of the main causes of mortality with detrimental economic and social effects in the world. The purpose of this study was to investigate the impact of collagen-chitosan gel extracted from Scomberomorus guttatus and shrimp skin in the treatment of second degree burn healing among rats. MATERIALS & METHOD: To fulfill the purpose of the study, chitosan and collagen were extracted respectively from shrimp and Scomberomorus guttatus skin waste by the acid-based method and were evaluated by using Pico Tag, SDS-PAGE. The burn wound healing efficiency of marine collagen-chitosan gel was examined in vivo using rats. Three different ratios of collagen and chitosan blend (Col-CH, 1:3, 1:1 and 3:1) were prepared to obtain the most effective Col-CH gel for burn wound healing and were compared to the animals treated with silver sulfadiazine ointment. Healing burn wound was studied by measuring wound surface area with Image J and histopathologic examination was carried out based on the mean of epithelialization, fibroblastic cells, acute and chronic inflammatory cells, angiogenesis, structure collagen and the amount of collagen on days 15 and 25 post-burn. RESULTS: The results of SDS-PAGE indicated that the extracted collagen was type I and it was composed of two α (α1 and α2) chains. Amino acid analysis showed a much higher glaycin content in extracted collagen which amounted to one-third of the total amino. The wound surface measurement showed a significant reduction in wound size in the group treated with Col-CH (3:1) compared to silver-sulfadiazine treated group on 15th and 25th days. Histopathological findings represented a high score in epithelialization, collagen, collagen structure, fibroblast cell and a decrease in inflammatory cells infiltration in Col-CH (3:1) treated group on 25th day. The most obvious finding of the present study is that chitosan-collagen gel (3:1) represented a better efficacy compared to sulfadiazine in burn wound healing on day 25 post-burn.

16.
Polymers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802198

RESUMO

Loss of skin integrity can lead to serious problems and even death. In this study, for the first time, the effect of exopolysaccharide (EPS) produced by cold-adapted yeast R. mucilaginosa sp. GUMS16 on a full-thickness wound in rats was evaluated. The GUMS16 strain's EPS was precipitated by adding cold ethanol and then lyophilized. Afterward, the EPS with polycaprolactone (PCL) and gelatin was fabricated into nanofibers with two single-needle and double-needle procedures. The rats' full-thickness wounds were treated with nanofibers and Hematoxylin and eosin (H&E) and Masson's Trichrome staining was done for studying the wound healing in rats. Obtained results from SEM, DLS, FTIR, and TGA showed that EPS has a carbohydrate chemical structure with an average diameter of 40 nm. Cell viability assessments showed that the 2% EPS loaded sample exhibits the highest cell activity. Moreover, in vivo implantation of nanofiber webs on the full-thickness wound on rat models displayed a faster healing rate when EPS was loaded into a nanofiber. These results suggest that the produced EPS can be used for skin tissue engineering applications.

17.
Curr Stem Cell Res Ther ; 16(6): 745-752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33494682

RESUMO

The past decade has evidenced numerous developments in the treatment of heart diseases; however many patients with chronic heart failure suffer from low quality of life. Therapeutic methods, including drug-delivery as well as heart transplantation, have been used to improve quality of life. Cell therapy and tissue engineering have been recently introduced to the field of medicine as a novel therapeutic approach. Treatment of heart diseases has seen novel development through the introduction of cell therapy approaches. Based on the evidence, cell therapy has emerged as a promising therapeutic strategy for the treatment of cardiac diseases. Since the first cell transplant to patients, different types of (stem) cells have been studied. This study aims to provide a comprehensive review of different types of cells and their roles in cardiac cell-based therapy.


Assuntos
Miocárdio , Transplante de Células-Tronco , Engenharia Tecidual , Terapia Baseada em Transplante de Células e Tecidos , Coração , Humanos , Miócitos Cardíacos , Qualidade de Vida
18.
Biomed Mater ; 15(3): 035014, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-31896091

RESUMO

Tendon tissue engineering based on stem cell differentiation has attracted a great deal of attention in recent years. Previous studies have examined the effect of cell-imprinted polydimethylsiloxane (PDMS) substrate on induction differentiation in stem cells. In this study, we used tenocyte morphology as a positive mold to create a tenocyte-imprinted substrate on PDMS. The morphology and topography of this tenocyte replica on PDMS was evaluated with scanning electron microscopy (SEM) and atomic force microscopy. The tenogenic differentiation induction capacity of the tenocyte replica in adipose tissue-derived mesenchymal stem cells (ADSCs) was then investigated and compared with other groups, including tissue replica (which was produced similarly to the tenocyte replica and was evaluated by SEM), decellularized tendon, and bone morphogenic protein (BMP)-12, as other potential inducers. This comparison gives us an estimate of the ability of tenocyte-imprinted PDMS (called cell replica in the present study) to induce differentiation compared to other inducers. For this reason, ADSCs were divided into five groups, including control, cell replica, tissue replica, decellularized tendon and BMP-12. ADSCs were seeded on each group separately and investigated by the real-time reverse transcription polymerase chain reaction (RT-PCR) technique after seven and 14 days. Our results showed that in spite of the higher effect of the growth factor on tenogenic differentiation, the cell replica can also induce tenocyte marker expression (scleraxis and tenomodulin) in ADSCs. Moreover, the tenogenic differentiation induction capacity of the cell replica was greater than tissue replica. Immunocytochemistry analysis revealed that ADSCs seeding on the cell replica for 14 days led to scleraxis and tenomodulin expression at the protein level. In addition, immunohistochemistry indicated that contrary to the promising results in vitro, there was little difference between ADSCs cultured on tenocyte-imprinted PDMS and untreated ADSCs. The results of such studies could lead to the production of inexpensive cell culture plates or biomaterials that can induce differentiation in stem cells without growth factors or other supplements.


Assuntos
Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/citologia , Tenócitos/citologia , Engenharia Tecidual/métodos , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Materiais Biocompatíveis , Proteínas Morfogenéticas Ósseas/química , Diferenciação Celular , Dimetilpolisiloxanos/química , Fatores de Diferenciação de Crescimento/química , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Impressão Molecular , Ratos , Tendões/citologia
19.
Methods ; 171: 62-67, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302179

RESUMO

A matrix derived from natural tissue functions as a highly biocompatible and versatile scaffold for tissue engineering applications. It can act as a supportive construct that provides a niche for colonization by host cells. In this work, we describe a cost-effective, reliable and reproducible protocol for decellularization and preservation of human skin as a potential soft tissue replacement. The decellularized human skin is achieved using purely chemical agents without any enzymatic steps. The suitability of the proposed method for the preservation of the extracellular matrix (ECM) structure and its main components and integrity were evaluated using histological and immunohistochemical analysis. Cryopreservation and final sterility were conducted using programmable freeze-drying and gamma irradiation. The architecture, basement membrane and 3D structure of ECM can be successfully preserved after decellularization. Our protocol was found to be appropriate to maintain key proteins such as collagen type I, III, IV and laminin in the structure of final scaffold. This protocol offers a novel platform for the preparation of a dermal substitute for potential clinical applications. STATEMENT OF SIGNIFICANCE: Clinical application of naturally-based scaffolds for verity of health problems obliges development of a reproducible and effective technology that does not change structural and compositional material properties during scaffold preparation and preservation. Lack of an effective protocol for the production of biological products using decellularization method is still remaining. This effort is directing to solve this challenge in order to accomplish the off-the -shelf availability of decellularized dermal scaffold in market for clinical application.


Assuntos
Derme Acelular/tendências , Matriz Extracelular/transplante , Procedimentos de Cirurgia Plástica/tendências , Engenharia Tecidual/tendências , Animais , Criopreservação , Matriz Extracelular/química , Humanos , Pele/química , Pele/citologia , Alicerces Teciduais/química
20.
Methods ; 171: 11-19, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326597

RESUMO

The efficacy of decellularized products for healing of acute and chronic wounds mostly relies on physical and chemical properties, processing methods and host response. Human Amniotic Membrane (HAM) is considered as an effective and highly used wound dressing in clinic. According to the proposed decellularization protocols for developing of HAM, we have compared different protocols to introduce the most efficient methods, which can be used as a functional dermal matrix. In this study, different methods of HAM decellularization were used to achieve an optimal process. After achievement of appropriate decellularized method in vitro the amniotic membrane were examined in term of animal in vivo study and human clinical trial. The results of in vitro and in vivo assay indicate that the HAMs which were prepared with peracetic acid (2 M) had a significantly different in term of GAGs quantification, DNA isolation and quantification, histological assessment, collagen analysis, Cell-Tissue Interaction Study and cytotoxicity (P < 0/05). Tissue samples treated with peracetic acid (2 M) were more acceptable than that of samples prepared with other protocols in terms of preserving natural components and structure and removing of cell fragments. The peracetic acid-processed HAM was further functionally evaluated through in vivo assessments that can further lead to tissue reconstruction within the human host.


Assuntos
Derme Acelular , Âmnio/química , Bandagens , Cicatrização/efeitos dos fármacos , Âmnio/citologia , Animais , Ensaios Clínicos como Assunto , Colágeno/química , Colágeno/farmacologia , Matriz Extracelular/química , Humanos , Modelos Animais , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA