Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 20(5): e1011229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696518

RESUMO

Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.


Assuntos
Camundongos de Cruzamento Colaborativo , Staphylococcus aureus Resistente à Meticilina , Fenótipo , Infecções Estafilocócicas , Animais , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Camundongos , Feminino , Masculino , Camundongos de Cruzamento Colaborativo/genética , Interações Hospedeiro-Patógeno/genética , Locos de Características Quantitativas , Modelos Animais de Doenças
2.
Sci Rep ; 13(1): 5340, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005391

RESUMO

Given an infected host, estimating the time that has elapsed since initial exposure to the pathogen is an important problem in public health. In this paper we use longitudinal gene expression data from human challenge studies of viral respiratory illnesses for building predictive models to estimate the time elapsed since onset of respiratory infection. We apply sparsity driven machine learning to this time-stamped gene expression data to model the time of exposure by a pathogen and subsequent infection accompanied by the onset of the host immune response. These predictive models exploit the fact that the host gene expression profile evolves in time and its characteristic temporal signature can be effectively modeled using a small number of features. Predicting the time of exposure to infection to be in first 48 h after exposure produces BSR in the range of 80-90% on sequestered test data. A variety of machine learning experiments provide evidence that models developed on one virus can be used to predict exposure time for other viruses, e.g., H1N1, H3N2, and HRV. The interferon [Formula: see text] signaling pathway appears to play a central role in keeping time from onset of infection. Successful prediction of the time of exposure to a pathogen has potential ramifications for patient treatment and contact tracing.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções Respiratórias , Viroses , Humanos , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Aprendizado de Máquina
3.
mBio ; 13(4): e0112022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35880881

RESUMO

Understanding the molecular mechanisms underlying resistance and tolerance to pathogen infection may present the opportunity to develop novel interventions. Resistance is the absence of clinical disease with a low pathogen burden, while tolerance is minimal clinical disease with a high pathogen burden. Salmonella is a worldwide health concern. We studied 18 strains of collaborative cross mice that survive acute Salmonella Typhimurium (STm) infections. We infected these strains orally and monitored them for 3 weeks. Five strains cleared STm (resistant), six strains maintained a bacterial load and survived (tolerant), while seven strains survived >7 days but succumbed to infection within the study period and were called "delayed susceptible." Tolerant strains were colonized in the Peyer's patches, mesenteric lymph node, spleen, and liver, while resistant strains had significantly reduced bacterial colonization. Tolerant strains had lower preinfection core body temperatures and had disrupted circadian patterns of body temperature postinfection sooner than other strains. Tolerant strains had higher circulating total white blood cells than resistant strains, driven by increased numbers of neutrophils. Tolerant strains had more severe tissue damage and higher circulating levels of monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (IFN-γ), but lower levels of epithelial neutrophil-activating protein 78 (ENA-78) than resistant strains. Quantitative trait locus (QTL) analysis revealed one significant association and six suggestive associations. Gene expression analysis identified 22 genes that are differentially regulated in tolerant versus resistant animals that overlapped these QTLs. Fibrinogen genes (Fga, Fgb, and Fgg) were found across the QTL, RNA, and top canonical pathways, making them the best candidate genes for differentiating tolerance and resistance. IMPORTANCE To survive a bacterial infection, an infected host can display resistance or tolerance. Resistance is indicated by a decrease in pathogen load, while for tolerance a high pathogen load is accompanied by minimal disease. We infected genetically diverse mice with Salmonella Typhimurium for 21 days and discovered new phenotypes for disease outcome (delayed susceptible, tolerant, and resistant). Tolerant strains showed the lowest preinfection core body temperatures and the most rapid disruption in circadian patterns of body temperature postinfection. Tolerant strains had higher circulating neutrophils and higher circulating levels of MCP-1 and IFN-γ, but lower levels of ENA-78 than did resistant strains, in addition to more severe tissue damage. QTL analysis revealed multiple associated regions, and gene expression analysis identified 22 genes that are differentially regulated in tolerant versus resistant animals in these regions. Fibrinogen genes (Fga, Fgb, and Fgg) were found across the QTL, RNA, and the top canonical pathways, suggesting a role in tolerance.


Assuntos
Salmonelose Animal , Salmonella typhimurium , Animais , Suscetibilidade a Doenças , Fibrinogênio , Interferon gama/genética , Camundongos , RNA , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética
4.
PLoS Genet ; 18(4): e1010075, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35417454

RESUMO

Salmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry. Our data revealed a broad range of phenotypes across CC strains in many parameters including survival, bacterial colonization, tissue damage, complete blood counts (CBC), and serum cytokines. Eighteen CC strains survived to day 7, while fourteen susceptible strains succumbed to infection before day 7. Several CC strains had sex differences in survival and colonization. Surviving strains had lower pre-infection baseline temperatures and were less active during their daily active period. Core body temperature disruptions were detected earlier after STm infection than activity disruptions, making temperature a better detector of illness. All CC strains had STm in spleen and liver, but susceptible strains were more highly colonized. Tissue damage was weakly negatively correlated to survival. We identified loci associated with survival on Chromosomes (Chr) 1, 2, 4, 7. Polymorphisms in Ncf2 and Slc11a1, known to reduce survival in mice after STm infections, are located in the Chr 1 interval, and the Chr 7 association overlaps with a previously identified QTL peak called Ses2. We identified two new genetic regions on Chr 2 and 4 associated with susceptibility to STm infection. Our data reveal the diversity of responses to STm infection across a range of host genetics and identified new candidate regions for survival of STm infection.


Assuntos
Salmonelose Animal , Infecções por Salmonella , Salmonella enterica , Animais , Suscetibilidade a Doenças , Feminino , Patrimônio Genético , Masculino , Camundongos , Fenótipo , Infecções por Salmonella/genética , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Sorogrupo
5.
Interface Focus ; 10(1): 20190086, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31897295

RESUMO

Recent developments in both biological data acquisition and analysis provide new opportunities for data-driven modelling of the health state of an organism. In this paper, we explore the evolution of temperature patterns generated by telemetry data collected from healthy and infected mice. We investigate several techniques to visualize and identify anomalies in temperature time series as temperature relates to the onset of infectious disease. Visualization tools such as Laplacian Eigenmaps and Multidimensional Scaling allow one to gain an understanding of a dataset as a whole. Anomaly detection tools for nonlinear time series modelling, such as Radial Basis Functions and Multivariate State Estimation Technique, allow one to build models representing a healthy state in individuals. We illustrate these methods on an experimental dataset of 306 Collaborative Cross mice challenged with Salmonella typhimurium and show how interruption in circadian patterns and severity of infection can be revealed directly from these time series within 3 days of the infection event.

6.
J Vis Exp ; (135)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29782005

RESUMO

A simple method to experimentally observe and measure the dispersion of a passive tracer in a laminar fluid flow is described. The method consists of first injecting fluorescent dye directly into a pipe filled with distilled water and allowing it to diffuse across the cross-section of the pipe to obtain a uniformly distributed initial condition. Following this period, the laminar flow is activated with a programmable syringe pump to observe the competition of advection and diffusion of the tracer through the pipe. Asymmetries in the tracer distribution are studied and correlations between the pipe cross-section and the shape of the distribution is shown: thin channels (aspect ratio << 1) produce tracers arriving with sharp fronts and tapering tails (front-loaded distributions), while thick channels (aspect ratio ~1) present the opposite behavior (back-loaded distributions). The experimental procedure is applied to capillary tubes of various geometries and is particularly relevant to microfluidic applications by dynamical similarity.


Assuntos
Ambiente Controlado , Microfluídica/métodos , Difusão
7.
Science ; 354(6317): 1252-1256, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27856848

RESUMO

Many microfluidic systems-including chemical reaction, sample analysis, separation, chemotaxis, and drug development and injection-require control and precision of solute transport. Although concentration levels are easily specified at injection, pressure-driven transport through channels is known to spread the initial distribution, resulting in reduced concentrations downstream. Here we document an unexpected phenomenon: The channel's cross-sectional aspect ratio alone can control the shape of the concentration profile along the channel length. Thin channels (aspect ratio << 1) deliver solutes arriving with sharp fronts and tapering tails, whereas thick channels (aspect ratio ~ 1) produce the opposite effect. This occurs for rectangular and elliptical pipes, independent of initial distributions. Thus, it is possible to deliver solute with prescribed distributions, ranging from gradual buildup to sudden delivery, based only on the channel dimensions.

8.
Phys Rev Lett ; 115(15): 154503, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550727

RESUMO

We study the role geometry plays in the emergence of asymmetries in diffusing passive scalars advected by pressure-driven flows in ducts and pipes of different aspect ratios. We uncover nonintuitive, multi-time-scale behavior gauged by a new statistic, which we term "geometric skewness" S^{G}, which measures instantaneously forming asymmetries at short times due to flow geometry. This signature distinguishes elliptical pipes of any aspect ratio, for which S^{G}=0, from rectangular ducts whose S^{G} is generically nonzero, and, interestingly, shows that a special duct of aspect ratio ≈0.53335 behaves like a circular pipe as its geometric skewness vanishes. Using a combination of exact solutions, novel short-time asymptotics, and Monte Carlo simulations, we establish the relevant time scales for plateaus and extrema in the evolution of the skewness and kurtosis for our class of geometries. For ducts limiting to channel geometries, we present new exact, single-series formulas for the first four moments on slices used to benchmark Monte Carlo simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA