Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biochem Pharmacol ; : 116182, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38556026

RESUMO

Osteoarthritis (OA) is the most common form of musculoskeletal disease, and its prevalence is increasing due to the aging of the population. Chronic pain is the most burdensome symptom of OA that significantly lowers patients' quality of life, also due to its frequent association with emotional comorbidities, such as anxiety and depression. In recent years, both chronic pain and mood alterations have been linked to the development of neuroinflammation in the peripheral nervous system, spinal cord and supraspinal brain areas. Thus, mechanisms at the basis of the development of the neuroinflammatory process may indicate promising targets for novel treatment for pain and affective comorbidities that accompany OA. In order to assess the key role of neuroinflammation in the maintenance of chronic pain and its potential involvement in development of psychiatric components, the monoiodoacetate (MIA) model of OA in rodents has been used and validated. In the present commentary article, we aim to summarize up-to-date results achieved in this experimental model of OA, focusing on glia activation and cytokine production in the sciatic nerve, dorsal root ganglia (DRGs), spinal cord and brain areas. The association of a neuroinflammatory state with the development of pain and anxiety- and depression-like behaviors are discussed. Results suggest that cells and molecules involved in neuroinflammation may represent novel targets for innovative pharmacological treatments of OA pain and mood comorbidities.

2.
Biomedicines ; 11(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38001985

RESUMO

Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC), which are characterized by chronic inflammation of the gastrointestinal (GI) tract. IBDs clinical manifestations are heterogeneous and characterized by a chronic relapsing-remitting course. Typical gastrointestinal signs and symptoms include diarrhea, GI bleeding, weight loss, and abdominal pain. Moreover, the presence of pain often manifests in the remitting disease phase. As a result, patients report a further reduction in life quality. Despite the scientific advances implemented in the last two decades and the therapies aimed at inducing or maintaining IBDs in a remissive condition, to date, their pathophysiology still remains unknown. In this scenario, the importance of identifying a common and effective therapeutic target for both digestive symptoms and pain remains a priority. Recent clinical and preclinical studies have reported the prokineticin system (PKS) as an emerging therapeutic target for IBDs. PKS alterations are likely to play a role in IBDs at multiple levels, such as in intestinal motility, local inflammation, ulceration processes, localized abdominal and visceral pain, as well as central nervous system sensitization, leading to the development of chronic and widespread pain. This narrative review summarized the evidence about the involvement of the PKS in IBD and discussed its potential as a druggable target.

3.
Cells ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759478

RESUMO

Osteoarthritis (OA) is the most prevalent joint disease associated with chronic pain. OA pain is often accompanied by mood disorders. We addressed the role of the Prokineticin (PK) system in pain and mood alterations in a mice OA model induced with monosodium iodoacetate (MIA). The effect of a PK antagonist (PC1) was compared to that of diclofenac. C57BL/6J male mice injected with MIA in the knee joint were characterized by allodynia, motor deficits, and fatigue. Twenty-eight days after MIA, in the knee joint, we measured high mRNA of PK2 and its receptor PKR1, pro-inflammatory cytokines, and MMP13. At the same time, in the sciatic nerve and spinal cord, we found increased levels of PK2, PKR1, IL-1ß, and IL-6. These changes were in the presence of high GFAP and CD11b mRNA in the sciatic nerve and GFAP in the spinal cord. OA mice were also characterized by anxiety, depression, and neuroinflammation in the prefrontal cortex and hippocampus. In both stations, we found increased pro-inflammatory cytokines. In addition, PK upregulation and reactive astrogliosis in the hippocampus and microglia reactivity in the prefrontal cortex were detected. PC1 reduced joint inflammation and neuroinflammation in PNS and CNS and counteracted OA pain and emotional disturbances.

4.
Psychopharmacology (Berl) ; 240(10): 2131-2146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530884

RESUMO

RATIONALE: Asteoarthritis (OA) is a leading cause of chronic pain in the elderly population and is often associated with emotional comorbidities such as anxiety and depression. Despite age is a risk factor for both OA and mood disorders, preclinical studies are mainly conducted in young adult animals. OBJECTIVES: Here, using young adult (11-week-old) and older adult (20-month-old) mice, we evaluate in a monosodium-iodoacetate-(MIA)-induced OA model the development of anxio-depressive-like behaviors and whether brain neuroinflammation may underlie the observed changes. We also test whether an effective pain treatment may prevent behavioral and biochemical alterations. METHODS: Mechanical allodynia was monitored throughout the experimental protocol, while at the end of protocol (14 days), anxio-depressive-like behaviors and cognitive dysfunction were assessed. Neuroinflammatory condition was evaluated in prefrontal cortex, hippocampus and hypothalamus. Serum IFNγ levels were also measured. Moreover, we test the efficacy of a 1-week treatment with morphine (2.5 mg/kg) on pain, mood alterations and neuroinflammation. RESULTS: We observed that young adult and older adult controls (CTRs) mice had comparable allodynic thresholds and developed similar allodynia after MIA injection. Older adult CTRs were characterized by altered behavior in the tests used to assess the presence of depression and cognitive impairment and by elevated neuroinflammatory markers in brain areas compared to younger ones. The presence of pain induced depressive-like behavior and neuroinflammation in adult young mice, anxiety-like behavior in both age groups and worsened neuroinflammation in older adult mice. Morphine treatment counteracted pain, anxio-depressive behaviors and neuroinflammatory activation in both young adult and older adult mice. CONCLUSIONS: Here, we demonstrated that the presence of chronic pain in young adult mice induces mood alterations and supraspinal biochemical changes and aggravates the alterations already evident in older adult animals. A treatment with morphine, counteracting the pain, prevents the development of anxio-depressive disorders and reduces neuroinflammation.


Assuntos
Dor Crônica , Osteoartrite , Idoso , Camundongos , Humanos , Animais , Morfina/farmacologia , Dor Crônica/tratamento farmacológico , Doenças Neuroinflamatórias , Modelos Animais de Doenças , Osteoartrite/induzido quimicamente , Osteoartrite/complicações , Osteoartrite/tratamento farmacológico , Hiperalgesia , Depressão/tratamento farmacológico , Depressão/etiologia
5.
J Clin Med ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445367

RESUMO

Knee osteoarthritis (OA) is a chronic degenerative inflammatory-based condition caused by a cascade of different intra-articular molecules including several cytokines. Among the cytokines, prokineticins (PKs) have recently been identified as important mediators of inflammation and pain. This observational study examined the potential involvement of PK2 in degenerative or traumatic knee disease. Fifteen patients presenting knee osteoarthritis (OA group) and 15 patients presenting a traumatic meniscal tear (TM group) were studied. Synovial fluid samples from affected knees were assessed for PK2, IL-10, and TNF-α using the ELISA method. At a long-term follow-up (minimum 5 years, mean = 6.1 years), patients in the TM group underwent clinical re-evaluation with PROMs (Tegner Activity Scale, IKDC, Lysholm, SKV); in addition, X-ray visualization was used to assess the presence of secondary OA. PK2 was detected in synovial fluids of both TM and OA patients and the levels were comparable between the two groups, while IL-10 levels were significantly greater in the OA group than those in TM patients. PK2 levels correlated with those of IL-10. PK2 levels were greater in blood effusions compared to clear samples, did not differ significantly between sexes, nor were they related to differences in weight, height, or injury (meniscal laterality, time since dosing). No correlation was found between PROMs and radiological classifications in patients in the TM group at final follow-up. These data are the first observations of PK2 in synovial fluid following traumatic meniscus injury. These findings suggest possible further prognostic indices and therapeutic targets to limit the development of secondary OA.

6.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166791, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336367

RESUMO

BACKGROUND: Crohn's disease-(CD) pathogenesis is still unknown and chronic pain is a frequent symptom in CD-patients. Identifying novel therapeutic targets and predisposing factors is a primary goal. In this regard, prokineticin system-(PKS) appears a promising target. AIMS AND METHODS: TNBS-model was used. DAI, abdominal and visceral pain, and muscle strength were monitored. CD-mice were sacrificed at two times (day 7 and 14 after TNBS) in order to identify PKS involvement in CD pathophysiology and pain. PKS characterization was performed in mesenteric lymph nodes-(MLN), colon, myenteric plexus-(MP), dorsal root ganglia-(DRGs) and spinal cord-(SC). Inflammation/neuroinflammation was also assessed in the same tissues. In order to evaluate alcohol abuse as a possible trigger for CD and its effect on PKS activation, naïve mice were administered (oral-gavage) with ethanol for 10 consecutive days. PKS as well as inflammation/neuroinflammation were evaluated in MLN, colon and MP. RESULTS: TNBS treated-mice showed a rapid increase in DAI, abdominal/visceral hypersensitivity and a progressive strength loss. In all tissue analysed of CD-mice, a quick and significant increase of mRNA of PKs and PKRs was observed, associated with an increase of pro-inflammatory cytokines (IL-1ß, IL-6 and TNFα) and macrophage/glia markers (iba1, CD11b and GFAP) levels. In alcohol abuse model, ethanol induced in colon and MP a significant PKS activation accompanied by inflammation/neuroinflammation. CONCLUSIONS: We can assume that PKS may be involved in CD development and pain. Furthermore, alcohol appears to activate PKS and may be a trigger factor for CD.


Assuntos
Alcoolismo , Doença de Crohn , Camundongos , Animais , Doença de Crohn/patologia , Doenças Neuroinflamatórias , Inflamação , Dor , Etanol
7.
Biomedicines ; 10(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36359375

RESUMO

Knee osteoarthritis is a common cause of pain and disability in old subjects. Pain may predispose to the development of frailty. Studies on mechanisms underlying pain in osteoarthritis models during aging are lacking. In this work, we used the monosodium iodoacetate model of osteoarthritis in adult (11-week-old) and old (20-month-old) C57BL/6J mice to compare hypersensitivity, locomotion, neuroinflammation, and the effects of morphine treatment. After osteoarthritis induction in adult and old mice, weight-bearing asymmetry, mechanical allodynia, and thermal hyperalgesia similarly developed, while locomotion and frailty were more affected in old than in adult animals. When behavioral deficits were present, the animals were treated for 7 days with morphine. This opioid counteracts the behavioral alterations and the frailty index worsening both in adult and old mice. To address the mechanisms that underlie pain, we evaluated neuroinflammatory markers and proinflammatory cytokine expression in the sciatic nerve, DRGs, and spinal cord. Overexpression of cytokines and glia markers were present in osteoarthritis adult and old mice, but the activation was qualitatively and quantitatively more evident in aged mice. Morphine was able to counteract neuroinflammation in both age groups. We demonstrate that old mice are more vulnerable to pain's detrimental effects, but prompt treatment is successful at mitigating these effects.

8.
Ageing Res Rev ; 73: 101515, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813977

RESUMO

The hypothesis that pain can predispose to frailty development has been recently investigated in several clinical studies suggesting that frailty and pain may share some mechanisms. Both pain and frailty represent important clinical and social problems and both lack a successful treatment. This circumstance is mainly due to the absence of in-depth knowledge of their pathological mechanisms. Evidence of shared pathways between frailty and pain are preliminary. Indeed, many clinical studies are observational and the impact of pain treatment, and relative pain-relief, on frailty onset and progression has never been investigated. Furthermore, preclinical research on this topic has yet to be performed. Specific researches on the pain-frailty relation are needed. In this narrative review, we will attempt to point out the most relevant findings present in both clinical and preclinical literature on the topic, with particular attention to genetics, epigenetics and inflammation, in order to underline the existing gaps and the potential future interventional strategies. The use of pain and frailty animal models discussed in this review might contribute to research in this area.


Assuntos
Fragilidade , Idoso , Animais , Idoso Fragilizado , Humanos , Inflamação , Modelos Animais , Dor/etiologia
9.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769347

RESUMO

Chemotherapy-induced neuropathy (CIN) is a major adverse effect associated with many chemotherapeutics, including bortezomib (BTZ). Several mechanisms are involved in CIN, and recently a role has been proposed for prokineticins (PKs), a chemokine family that induces proinflammatory/pro-algogen mediator release and drives the epigenetic control of genes involved in cellular differentiation. The present study evaluated the relationships between epigenetic mechanisms and PKs in a mice model of BTZ-induced painful neuropathy. To this end, spinal cord alterations of histone demethylase KDM6A, nuclear receptors PPARα/PPARγ, PK2, and pro-inflammatory cytokines IL-6 and IL-1ß were assessed in neuropathic mice treated with the PK receptors (PKRs) antagonist PC1. BTZ treatment promoted a precocious upregulation of KDM6A, PPARs, and IL-6, and a delayed increase of PK2 and IL-1ß. PC1 counteracted allodynia and prevented the increase of PK2 and of IL-1ß in BTZ neuropathic mice. The blockade of PKRs signaling also opposed to KDM6A increase and induced an upregulation of PPAR gene transcription. These data showed the involvement of epigenetic modulatory enzymes in spinal tissue phenomena associated with BTZ painful neuropathy and underline a role of PKs in sustaining the increase of proinflammatory cytokines and in exerting an inhibitory control on the expression of PPARs through the regulation of KDM6A gene expression in the spinal cord.


Assuntos
Bortezomib/toxicidade , Hormônios Gastrointestinais/metabolismo , Histona Desmetilases/metabolismo , Hiperalgesia/patologia , Neuropeptídeos/metabolismo , Dor/patologia , Doenças do Sistema Nervoso Periférico/patologia , Medula Espinal/patologia , Animais , Antineoplásicos/toxicidade , Citocinas/metabolismo , Hormônios Gastrointestinais/genética , Histona Desmetilases/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Dor/induzido quimicamente , Dor/genética , Dor/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Medula Espinal/metabolismo
10.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638592

RESUMO

The development of neuropathy and of mood alterations is frequent after chemotherapy. These complications, independent from the antitumoral mechanism, are interconnected due to an overlapping in their processing pathways and a common neuroinflammatory condition. This study aims to verify whether in mice the treatment with the proteasome inhibitor bortezomib (BTZ), at a protocol capable of inducing painful neuropathy, is associated with anxiety, depression and supraspinal neuroinflammation. We also verify if the therapeutic treatment with the antagonist of the prokineticin (PK) system PC1, which is known to contrast pain and neuroinflammation, can prevent mood alterations. Mice were treated with BTZ (0.4 mg/kg three times/week for 4 weeks); mechanical allodynia and locomotor activity were evaluated over time while anxiety (dark light and marble burying test), depression (sucrose preference and swimming test) and supraspinal neuroinflammation were checked at the end of the protocol. BTZ treated neuropathic mice develop anxiety and depression. The presence of mood alterations is related to the presence of neuroinflammation and PK system activation in prefrontal cortex, hippocampus and hypothalamus with high levels of PK2 and PKR2 receptor, IL-6 and TNF-α, TLR4 and an upregulation of glial markers. PC1 treatment, counteracting pain, prevented the development of supraspinal inflammation and depression-like behavior in BTZ mice.


Assuntos
Afeto/efeitos dos fármacos , Bortezomib/farmacologia , Inibidores de Proteassoma/farmacologia , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Dor/metabolismo , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Brain Behav Immun ; 94: 29-40, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737173

RESUMO

OBJECTIVE: Treatment of pain associated with osteoarthritis (OA) is unsatisfactory and innovative approaches are needed. The secretome from human adipose-derived mesenchymal stem cells (hASC-Conditioned Medium, CM) has been successfully used to relieve painful symptoms in models of chronic pain. The aim of this study was to explore the efficacy of the hASC-CM to control pain and neuroinflammation in an animal model of OA. METHODS: OA was induced in mice by intra-articular monosodium-iodoacetate (MIA) injection. Thermal hyperalgesia and mechanical allodynia were assessed. Once hypersensitivity was established (7 days after MIA), hASC-CM was injected by IA, IPL and IV route and its effect monitored over time. Neuroinflammation in nerve, dorsal root ganglia and spinal cord was evaluated measuring proinflammatory markers and mediators by RT-qPCR. Protein content analysis of secretome by Mass Spectrometry was performed. RESULTS: A single injection with hASC-CM induced a fast and long lasting antihyperalgesic and antiallodynic effect. The IV route of administration appeared to be the most efficacious although all the treatments were effective. The effect on pain correlated with the ability of hASC-CM to reduce the neuroinflammatory condition in both the peripheral and central nervous system. Furthermore, the secretome analysis revealed 101 factors associated with immune regulation. CONCLUSION: We suggest that hASC-CM is a valid treatment option for controlling OA-related hypersensitivity, exerting a rapid and long lasting pain relief. The mechanisms underpinning its effects are likely linked to the positive modulation of neuroinflammation in peripheral and central nervous system that sustains peripheral and central sensitization.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Animais , Modelos Animais de Doenças , Humanos , Hiperalgesia , Injeções Intra-Articulares , Camundongos , Osteoartrite/complicações , Medula Espinal
12.
Front Immunol ; 11: 2119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072073

RESUMO

Neurotoxicity is a common side effect of chemotherapeutics that often leads to the development of chemotherapy-induced peripheral neuropathy (CIPN). The peptide Prokineticin 2 (PK2) has a key role in experimental models of CIPN and can be considered an insult-inducible endangering mediator. Since primary afferent sensory neurons are highly sensitive to anticancer drugs, giving rise to dysesthesias, the aim of our study was to evaluate the alterations induced by vincristine (VCR) and bortezomib (BTZ) exposure in sensory neuron cultures and the possible preventive effect of blocking PK2 signaling. Both VCR and BTZ induced a concentration-dependent reduction of total neurite length that was prevented by the PK receptor antagonist PC1. Antagonizing the PK system also reduced the upregulation of PK2, PK-R1, TLR4, IL-6, and IL-10 expression induced by chemotherapeutic drugs. In conclusion, inhibition of PK signaling with PC1 prevented the neurotoxic effects of chemotherapeutics, suggesting a promising strategy for neuroprotective therapies against the sensory neuron damage induced by exposure to these drugs.


Assuntos
Antineoplásicos/toxicidade , Bortezomib/toxicidade , Hormônios Gastrointestinais/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neuropeptídeos/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Células Receptoras Sensoriais/efeitos dos fármacos , Triazinas/farmacologia , Vincristina/toxicidade , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Hormônios Gastrointestinais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Neuroimunomodulação/efeitos dos fármacos , Neuropeptídeos/fisiologia , Fármacos Neuroprotetores/uso terapêutico , RNA Mensageiro/biossíntese , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Triazinas/uso terapêutico
13.
Brain Behav Immun ; 82: 422-431, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525509

RESUMO

Vincristine (VCR) treatment is often associated to painful neuropathy. Its development is independent from antitumoral mechanism and involves neuroinflammation. We investigated the role of the chemokine prokineticin (PK)2 in a mouse model of VCR induced neuropathy using a PK-receptors (PK-R) antagonist to counteract its development. We also evaluated emotional like deficits in VCR mice. VCR (0,1 mg/kg) was i.p. injected in C57BL/6J male mice once a day for 14 consecutive days. Pain, anxiety and depressive like behaviors were assessed in animals. PK2, PK-Rs, cytokines, neuroinflammatory markers (CD68, CD11b, GFAP, TLR4) and ATF3 were evaluated in DRG, spinal cord, prefrontal cortex and hippocampus. The PK-Rs antagonist PC1, was s.c. injected (150 µg/kg) twice a day from day 7 (hypersensitivity state) until day 14. Its effect on pain and neuroinflammation was evaluated. VCR mice developed neuropathic pain but not mood alterations. After 7 days of VCR treatment we observed a neuroinflammatory condition in DRG with high levels of PK-Rs, TLR4, CD68, ATF3 and IL-1ß without relevant alterations in spinal cord. At day 14, an upregulation of PK system and a marked neuroinflammation was evident also in spinal cord. Moreover, at the same time, we observed initial alterations in supraspinal brain areas. PC1 treatment significantly counteracted neuropathic pain and blunted neuroinflammation.


Assuntos
Hormônios Gastrointestinais/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuropeptídeos/metabolismo , Vincristina/toxicidade , Animais , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimunomodulação/efeitos dos fármacos , Distribuição Aleatória , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
14.
J Neuroinflammation ; 16(1): 89, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995914

RESUMO

BACKGROUND: Neuropathy is a dose-limiting side effect of many chemotherapeutics, including bortezomib. The mechanisms underlying this condition are not fully elucidated even if a contribution of neuroinflammation was suggested. Here, we investigated the role of a chemokine family, the prokineticins (PKs), in the development of bortezomib-induced peripheral neuropathy (BIPN), and we used a PK receptor antagonist to counteract the development and progression of the pathology. METHODS: Neuropathy was induced in male C57BL/6J mice by using a protocol capable to induce a detectable neuropathic phenotype limiting systemic side effects. The presence of allodynia (both mechanical and thermal) and thermal hyperalgesia was monitored over time. Mice were sacrificed at two different time points: 14 and 28 days after the first bortezomib (BTZ) injection. At these times, PK system activation (PK2 and PK-Rs), macrophage and glial activation markers, and cytokine production were evaluated in the main station involved in pain transmission (sciatic nerve, DRG, and spinal cord), and the effect of a PK receptors antagonist (PC1) on the same behavioral and biochemical parameters was assessed. Structural damage of DRG during BTZ treatment and an eventual protective effect of PC1 were also evaluated. RESULTS: BTZ induces in mice a dose-related allodynia and hyperalgesia and a progressive structural damage to the DRG. We observed a precocious increase of macrophage activation markers and unbalance of pro- and anti-inflammatory cytokines in sciatic nerve and DRG together with an upregulation of GFAP in the spinal cord. At higher BTZ cumulative dose PK2 and PK receptors are upregulated in the PNS and in the spinal cord. The therapeutic treatment with the PK-R antagonist PC1 counteracts the development of allodynia and hyperalgesia, ameliorates the structural damage in the PNS, decreases the levels of activated macrophage markers, and prevents full neuroimmune activation in the spinal cord. CONCLUSIONS: PK system may be a strategical pharmacological target to counteract BTZ-induced peripheral neuropathy. Blocking PK2 activity reduces progressive BTZ toxicity in the DRG, reducing neuroinflammation and structural damage to DRG, and it may prevent spinal cord sensitization.


Assuntos
Antineoplásicos/toxicidade , Bortezomib/toxicidade , Hormônios Gastrointestinais/metabolismo , Neuropeptídeos/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo
15.
Front Immunol ; 10: 2914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921173

RESUMO

Suppression of the immune system has been constantly reported in the last years as a classical side effect of opioid drugs. Most of the studies on the immunological properties of opioids refer to morphine. Although morphine remains the "reference molecule," other semisynthetic and synthetic opioids are frequently used in the clinical practice. The primary objective of this review is to analyze the available literature on the immunomodulating properties of opioid drugs different from morphine in preclinical models and in the human. A search strategy was conducted in PubMed, Embase, and the Cochrane databases using the terms "immunosuppression," "immune system," "opioids," "Natural killer cells," "cytokines," and "lymphocytes." The results achieved concerning the effects of fentanyl, methadone, oxycodone, buprenorphine, remifentanil, tramadol, and tapentadol on immune responses in animal studies, in healthy volunteers and in patients are reported. With some limitations due to the different methods used to measure immune system parameters, the large range of opioid doses and the relatively scarce number of participants in the available studies, we conclude that it is not correct to generalize immunosuppression as a common side effect of all opioid molecules.


Assuntos
Analgésicos Opioides/farmacologia , Fatores Imunológicos/farmacologia , Analgésicos Opioides/química , Analgésicos Opioides/uso terapêutico , Animais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico
16.
J Pain Res ; 11: 1297-1305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022848

RESUMO

INTRODUCTION: Impaired immune function during the perioperative period may be associated with worse short- and long-term outcomes. Morphine is considered a major contributor to immune modulation. PATIENTS AND METHODS: We performed a pilot study to investigate postoperative immune function by analyzing peripheral blood mononuclear cells' functionality and cytokine production in 16 patients undergoing major abdominal surgery. All patients were treated with intravenous (i.v.) patient-controlled analgesia with morphine and continuous wound infusion with ropivacaine+methylprednisolone for 24 hours. After 24 hours, patients were randomized into two groups, one continuing intrawound infusion and the other receiving only i.v. analgesia. We evaluated lymphoproliferation and cytokine production by peripheral blood mononuclear cells at the end of surgery and at 24 and 48 hours postoperatively. RESULTS: A significant reduction in TNF-α, IL-2, IFN-γ and lymphoproliferation was observed immediately after surgery, indicating impaired cell-mediated immunity. TNF-α and IFN-γ remained suppressed up to 48 hours after surgery, while a trend to normalization was observed for IL-2 and lymphoproliferation, irrespective of the treatment group. A significant inverse correlation was present between age and morphine and between age and lymphoproliferation. No negative correlation was present between morphine and cytokine production. We did not find any differences within the two groups between 24 and 48 hours in terms of morphine consumption and immune responses. CONCLUSION: A relevant depression of cell-mediated immunity is associated with major surgery and persists despite optimal analgesia. Even though morphine may participate in immunosuppression, we did not retrieve any dose-related effect.

17.
Mediators Inflamm ; 2017: 9547056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209105

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used to treat migraine, but the mechanisms of their effects in this pathology are not fully elucidated. The trigeminal ganglia and calcitonin gene-related peptide (CGRP) have been implicated in the pathophysiology of migraine. The release of CGRP and prostaglandin E2 (PGE2) from freshly isolated rat trigeminal ganglia was evaluated after oral administration of nimesulide, etoricoxib, and ketoprofen, NSAIDs with different pharmacological features. Thirty minutes after oral administration, nimesulide, 10 mg/Kg, decreased the GCRP release induced by an inflammatory soup, while the other NSAIDs were ineffective at this point in time. Two hours after oral nimesulide (5 and 10 mg/Kg) and ketoprofen (10 mg/Kg), but not of etoricoxib, a significant decrease in the CGRP release was observed. All drugs reduced PGE2, although with some differences in timing and doses, and the action on CGRP does not seem to be related to PGE2 inhibition. The reduction of CGRP release from rat trigeminal ganglia after nimesulide and ketoprofen may help to explain the mechanism of action of NSAIDs in migraine. Since at 30 minutes only nimesulide was effective in reducing CGRP release, these results suggest that this NSAID may exert a particularly rapid effect in patients with migraine.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dinoprostona/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/efeitos dos fármacos
18.
Sci Rep ; 7(1): 9904, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851944

RESUMO

Painful neuropathy is one of the complications of diabetes mellitus that adversely affects patients'quality of life. Pharmacological treatments are not fully satisfactory, and novel approaches needed. In a preclinical mouse model of diabetes the effect of both human mesenchymal stromal cells from adipose tissue (hASC) and their conditioned medium (hASC-CM) was evaluated. Diabetes was induced by streptozotocin. After neuropathic hypersensitivity was established, mice were intravenously injected with either 1 × 106 hASC or with CM derived from 2 × 106 hASC. Both hASC and CM (secretome) reversed mechanical, thermal allodynia and thermal hyperalgesia, with a rapid and long lasting effect, maintained up to 12 weeks after treatments. In nerves, dorsal root ganglia and spinal cord of neuropathic mice we determined high IL-1ß, IL-6 and TNF-α and low IL-10 levels. Both treatments restored a correct pro/antinflammatory cytokine balance and prevented skin innervation loss. In spleens of streptozotocin-mice, both hASC and hASC-CM re-established Th1/Th2 balance that was shifted to Th1 during diabetes. Blood glucose levels were unaffected although diabetic animals regained weight, and kidney morphology was recovered by treatments. Our data show that hASC and hASC-CM treatments may be promising approaches for diabetic neuropathic pain, and suggest that cell effect is likely mediated by their secretome.


Assuntos
Tecido Adiposo/citologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Análise de Variância , Animais , Biomarcadores , Calcitonina/química , Calcitonina/genética , Meios de Cultivo Condicionados , Citocinas/metabolismo , Diabetes Mellitus Experimental , Neuropatias Diabéticas/terapia , Modelos Animais de Doenças , Gânglios Espinais/citologia , Humanos , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Fibras Nervosas/metabolismo , Medula Espinal/citologia , Ubiquitina Tiolesterase/genética
19.
Anesth Analg ; 124(3): 986-995, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997452

RESUMO

BACKGROUND: Opioid drugs affect immunity, but not all opioid drugs share the same immunomodulatory properties. Tapentadol is an analgesic drug with a dual synergistic mechanism of action: µ-opioid receptor agonism and noradrenaline reuptake inhibition. Weaker µ-opioid receptor agonism combined with noradrenaline reuptake inhibition results in potent analgesia with reduced opioid side effects. We evaluated the impact of tapentadol on splenic cytokine in normal and in hyperalgesia/allodynia mice, comparing it with morphine and reboxetine, a noradrenaline reuptake inhibitor. METHODS: Tapentadol, reboxetine, and morphine were injected subcutaneously into naïve and mice that underwent sciatic nerve chronic constriction injury, and their effect on splenic cytokines (interferon-γ [IFN-γ], interleukin [IL]-2, IL-10, and IL-4) was measured by enzyme-linked immunosorbent assay after acute or chronic treatment. Nociceptive thresholds, thermal hyperalgesia, and allodynia also were assessed. Data were analyzed with 2-way analysis of variance (behavior) or 1-way analysis of variance (cytokines) followed by Bonferroni post hoc test. RESULTS: Primary outcomes of our study were the effects of drugs on splenic cytokines. Our data indicate that acute tapentadol did not modify cytokine production in comparison with animals that received saline, whereas morphine suppressed all the cytokines: saline versus morphine 10 mg/kg (mean difference [MD], 95% confidence interval [CI]: IFN-γ = 12,400 [7760, 17,040], P < .001; IL-2 = 216.2 [47.69, 384.7], P < .01; IL-10 = 868 [523.7, 1212], P < .001; and IL-4 = 17.26 [10.32, 24.20], P < .001). A significant difference also was present between morphine and tapentadol (morphine 10 mg/kg versus tapentadol 20 mg/kg: MD [95% CI]: IFN-γ = -11,600 [-16,240, -6960], P < .001; IL-2 = -334.2 [-502.7, -165.7], P < .001; IL-10 = -959 [-1303, -614.7], P < .001; IL-4 = -18.66 [-25.60, -11.72], P < .001). When chronically injected for 7 days, tapentadol and reboxetine did not significantly affect cytokines when compared with saline-treated animals. The immunoprofile of tapentadol was different from that of morphine also in mice that were in a condition of neuropathic pain. All cytokines appeared significantly decreased in mice that received a chronic constriction injury in comparison with sham animals but, after 7 days of treatment, with a similar antihyperalgesic profile, IL-10 and IL-4 were significantly increased in tapentadol and reboxetine animals in comparison with morphine mice (morphine versus tapentadol: MD [95% CI], IL-10 = -926.4 [-1664, -188.5], P < .01; IL-4 = -8.15 [-12.46, -3.84], P < .001). CONCLUSIONS: Acute and chronic tapentadol seem to be protective of splenic cytokines in contrast with morphine, which exerts a generalized suppression on all cytokines.


Assuntos
Analgésicos Opioides/administração & dosagem , Citocinas/biossíntese , Fenóis/administração & dosagem , Receptores Opioides mu/agonistas , Baço/efeitos dos fármacos , Baço/metabolismo , Animais , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Tapentadol
20.
Int J Dent ; 2016: 6820781, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034673

RESUMO

Objectives. To evaluate substance P (SP) and the effect of ketoprofen administration, a nonsteroidal anti-inflammatory drug (NSAID), on SP in the pulp of upper third molars with experimentally induced pulpal lesion. Materials and Methods. A sample of 20 young systemically healthy adults of both sexes, nonsmokers, with a healthy upper third molar to extract for orthodontic purposes, was selected. Prior to the procedure, an inflammatory process was generated by mechanical exposure of the pulp. After 15 minutes, the pulp was collected using a sterile barbed broach. SP levels were determined by using a commercially available enzyme immunoassay (ELISA) kit. The subjects were randomly divided into two groups: group 1 received a dose of ketoprofen 30 minutes prior to the experimental procedure. The subjects of group 2 did not receive any kind of drug administration. The patients were asked to complete a diary on the postoperative pain. Results. No statistically significant difference could be detected in SP expression between the two groups. In group 1, pain manifestation was significantly delayed in comparison with group 2. Conclusions. Preventive administration of ketoprofen did not significantly affect the pulpal levels of SP but resulted in a significantly postponed manifestation of pain after extraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA