Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 181: 349-356, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781815

RESUMO

Zinc oxide nanoparticles (nano-ZnO) are attractive as fertilizer materials but high concentrations may negatively affect the environment. To reduce their dispersion in the environment we entrapped nano-ZnO in biodegradable polymer beads consisting of alginate and polyvinyl alcohol (PVA). The alginate/PVA/ZnO beads were prepared via ionotropic gelation using two different crosslinking ions (Ca2+ and Zn2+), and the effect of alginate crosslinking ion and PVA content on bead structure, water absorption, water retention and zinc release was investigated. The pure CaAlg and ZnAlg beads demonstrated a poor water absorption and retention, which were strongly enhanced by the incorporation of PVA into the beads. The continuous Zn release was measured in a sand column, and it was found that the Zn-crosslinked beads rapidly released high concentrations of Zn followed by a more gradual Zn release, whereas Ca alginates showed only a gradual Zn release. The Zn dissolution kinetics could be tuned by the crosslinking ion composition. The prepared nano-ZnO-containing alginate/PVA beads may be attractive for Zn fertilizer applications under water-limited conditions.


Assuntos
Alginatos/química , Reagentes de Ligações Cruzadas/química , Fertilizantes , Microesferas , Nanopartículas/química , Álcool de Polivinil/química , Óxido de Zinco/química , Custos e Análise de Custo , Íons , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA