Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO J ; 43(4): 637-662, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243117

RESUMO

The E. coli transcriptome at the cell's poles (polar transcriptome) is unique compared to the membrane and cytosol. Several factors have been suggested to mediate mRNA localization to the membrane, but the mechanism underlying polar localization of mRNAs remains unknown. Here, we combined a candidate system approach with proteomics to identify factors that mediate mRNAs localization to the cell poles. We identified the pole-to-pole oscillating protein MinD as an essential factor regulating polar mRNA localization, although it is not able to bind RNA directly. We demonstrate that RNase E, previously shown to interact with MinD, is required for proper localization of polar mRNAs. Using in silico modeling followed by experimental validation, the membrane-binding site in RNase E was found to mediate binding to MinD. Intriguingly, not only does MinD affect RNase E interaction with the membrane, but it also affects its mode of action and dynamics. Polar accumulation of RNase E in ΔminCDE cells resulted in destabilization and depletion of mRNAs from poles. Finally, we show that mislocalization of polar mRNAs may prevent polar localization of their protein products. Taken together, our findings show that the interplay between MinD and RNase E determines the composition of the polar transcriptome, thus assigning previously unknown roles for both proteins.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Bactérias/metabolismo , Adenosina Trifosfatases/metabolismo
2.
Cell Rep ; 42(11): 113393, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934665

RESUMO

TmaR, the only known pole-localizer protein in Escherichia coli, was shown to cluster at the cell poles and control localization and activity of the major sugar regulator in a tyrosine phosphorylation-dependent manner. Here, we show that TmaR assembles by phase separation (PS) via heterotypic interactions with RNA in vivo and in vitro. An unbiased automated mutant screen combined with directed mutagenesis and genetic manipulations uncovered the importance of a predicted nucleic-acid-binding domain, a disordered region, and charged patches, one containing the phosphorylated tyrosine, for TmaR condensation. We demonstrate that, by protecting flagella-related transcripts, TmaR controls flagella production and, thus, cell motility and biofilm formation. These results connect PS in bacteria to survival and provide an explanation for the linkage between metabolism and motility. Intriguingly, a point mutation or increase in its cellular concentration induces irreversible liquid-to-solid transition of TmaR, similar to human disease-causing proteins, which affects cell morphology and division.


Assuntos
Bactérias , Condensados Biomoleculares , Humanos , Proteínas , Flagelos/fisiologia , Escherichia coli/genética , Tirosina
3.
J Biol Rhythms ; 38(5): 447-460, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515350

RESUMO

The cyanobacterial circadian oscillator, consisting of KaiA, KaiB, and KaiC proteins, drives global rhythms of gene expression and compaction of the chromosome and regulates the timing of cell division and natural transformation. While the KaiABC posttranslational oscillator can be reconstituted in vitro, the Kai-based oscillator is subject to several layers of regulation in vivo. Specifically, the oscillator proteins undergo changes in their subcellular localization patterns, where KaiA and KaiC are diffuse throughout the cell during the day and localized as a focus at or near the pole of the cell at night. Here, we report that the CI domain of KaiC, when in a hexameric state, is sufficient to target KaiC to the pole. Moreover, increased ATPase activity of KaiC correlates with enhanced polar localization. We identified proteins associated with KaiC in either a localized or diffuse state. We found that loss of Rbp2, found to be associated with localized KaiC, results in decreased incidence of KaiC localization and long-period circadian phenotypes. Rbp2 is an RNA-binding protein, and it appears that RNA-binding activity of Rbp2 is required to execute clock functions. These findings uncover previously unrecognized roles for Rbp2 in regulating the circadian clock and suggest that the proper localization of KaiC is required for a fully functional clock in vivo.


Assuntos
Relógios Circadianos , Synechococcus , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Synechococcus/genética , Fosforilação
4.
Cell Rep ; 41(13): 111881, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577380

RESUMO

Hfq, an Sm-like protein and the major RNA chaperone in E. coli, has been shown to distribute non-uniformly along a helical path under normal growth conditions and to relocate to the cell poles under certain stress conditions. We have previously shown that Hfq relocation to the poles is accompanied by polar accumulation of most small RNAs (sRNAs). Here, we show that Hfq undergoes RNA-dependent phase separation to form cytoplasmic or polar condensates of different density under normal and stress conditions, respectively. Purified Hfq forms droplets in the presence of crowding agents or RNA, indicating that its condensation is via heterotypic interactions. Stress-induced relocation of Hfq condensates and sRNAs to the poles depends on the pole-localizer TmaR. Phase separation of Hfq correlates with its ability to perform its posttranscriptional roles as sRNA-stabilizer and sRNA-mRNA matchmaker. Our study offers a spatiotemporal mechanism for sRNA-mediated regulation in response to environmental changes.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fator Proteico 1 do Hospedeiro , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
6.
FEBS Lett ; 595(22): 2805-2815, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644400

RESUMO

The mechanisms controlling membrane recognition by proteins with one hydrophobic stretch at their carboxyl terminus (tail anchor, TA) are poorly defined. The Escherichia coli TAs of ElaB and YqjD, which share sequential and structural similarity with the Saccharomyces cerevisiae TA of Fis1, were shown to localize to mitochondria. We show that YqjD and ElaB are directed by their TAs to bacterial cell poles. Fis1(TA) expressed in E. coli localizes like the endogenous TAs. The yeast and bacterial TAs are inserted in the E. coli inner membrane, and they all show affiliation to phosphatidic acid (PA), found in the membrane of the bacterial cell poles and of the yeast mitochondria. Our results suggest a mechanism for TA membrane recognition conserved from bacteria to mitochondria and raise the possibility that through their interaction with PA, and TAs play a role across prokaryotes and eukaryotes in controlling cell/organelle fate.


Assuntos
Sequência Conservada , Proteínas de Escherichia coli/genética , Evolução Molecular , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
iScience ; 24(10): 103096, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622151

RESUMO

The omnigenic/polygenic theory, which states that complex traits are not shaped by single/few genes, but by situation-specific large networks, offers an explanation for a major enigma in microbiology: deletion of specific small RNAs (sRNAs) playing key roles in various aspects of bacterial physiology, including virulence and antibiotic resistance, results in surprisingly subtle phenotypes. A recent study uncovered polar accumulation of most sRNAs upon osmotic stress, the majority not known to be involved in the applied stress. Here we show that cells deleted for a handful of pole-enriched sRNAs exhibit fitness defect in several stress conditions, as opposed to single, double, or triple sRNA-knockouts, implying that regulation by sRNA relies on sets of genes. Moreover, analysis of RNA-seq data of Escherichia coli and Salmonella typhimurium exposed to antibiotics and/or infection-relevant conditions reveals the involvement of multiple sRNAs in all cases, in line with the existence of a polygenic plan for sRNA-mediated regulation.

8.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33376208

RESUMO

The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.


Assuntos
Polaridade Celular/fisiologia , Escherichia coli/metabolismo , Transporte Proteico/fisiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Açúcares/metabolismo , Tirosina/metabolismo
9.
Wiley Interdiscip Rev RNA ; 12(2): e1615, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32851805

RESUMO

Only recently has it been recognized that the transcriptome of bacteria and archaea can be spatiotemporally regulated. All types of prokaryotic transcripts-rRNAs, tRNAs, mRNAs, and regulatory RNAs-may acquire specific localization and these patterns can be temporally regulated. In some cases bacterial RNAs reside in the vicinity of the transcription site, but in many others, transcripts show distinct localizations to the cytoplasm, the inner membrane, or the pole of rod-shaped species. This localization, which often overlaps with that of the encoded proteins, can be achieved either in a translation-dependent or translation-independent fashion. The latter implies that RNAs carry sequence-level features that determine their final localization with the aid of RNA-targeting factors. Localization of transcripts regulates their posttranscriptional fate by affecting their degradation and processing, translation efficiency, sRNA-mediated regulation, and/or propensity to undergo RNA modifications. By facilitating complex assembly and liquid-liquid phase separation, RNA localization is not only a consequence but also a driver of subcellular spatiotemporal complexity. We foresee that in the coming years the study of RNA localization in prokaryotes will produce important novel insights regarding the fundamental understanding of membrane-less subcellular organization and lead to practical outputs with biotechnological and therapeutic implications. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Assuntos
Transporte de RNA , RNA Bacteriano , Citoplasma/metabolismo , Células Procarióticas/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
10.
Front Microbiol ; 11: 624830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552035

RESUMO

Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.

11.
Mol Cell ; 76(4): 574-589.e7, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31540875

RESUMO

RNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E. coli mRNAs may localize to where their products localize in a translation-independent manner, thus challenging the transcription-translation coupling extent. However, the scope of RNA localization in bacteria remained unknown. Here, we report the distribution of the E. coli transcriptome between the membrane, cytoplasm, and poles by combining cell fractionation with deep-sequencing (Rloc-seq). Our results reveal asymmetric RNA distribution on a transcriptome-wide scale, significantly correlating with proteome localization and prevalence of translation-independent RNA localization. The poles are enriched with stress-related mRNAs and small RNAs, the latter becoming further enriched upon stress in an Hfq-dependent manner. Genome organization may play a role in localizing membrane protein-encoding transcripts. Our results show an unexpected level of intricacy in bacterial transcriptome organization and highlight the poles as hubs for regulation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Mensageiro/genética , Transcriptoma , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Transporte Proteico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
12.
PLoS Genet ; 13(9): e1007017, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945742

RESUMO

The Sec system is responsible for protein insertion, translocation and secretion across membranes in all cells. The bacterial actin homolog MreB controls various processes, including cell wall synthesis, membrane organization and polarity establishment. Here we show that the two systems genetically interact and that components of the Sec system, especially the SecA motor protein, are essential for spatiotemporal organization of MreB in E. coli, as evidenced by the accumulation of MreB at irregular sites in Sec-impaired cells. MreB mislocalization in SecA-defective cells significantly affects MreB-coordinated processes, such as cell wall synthesis, and induce formation of membrane invaginations enriched in high fluidity domains. Additionally, MreB is not recruited to the FtsZ ring in secA mutant cells, contributing to division arrest and cell filamentation. Our results show that all these faults are due to improper targeting of MreB to the membrane in the absence of SecA. Thus, when we reroute RodZ, MreB membrane-anchor, by fusing it to a SecA-independent integral membrane protein and overproducing it, MreB localization is restored and the defect in cell division is corrected. Notably, the RodZ moiety is not properly inserted into the membrane, strongly suggesting that it only serves as a bait for placing MreB around the cell circumference. Finally, we show that MreB localization depends on SecA also in C. crescentus, suggesting that regulation of MreB by the Sec system is conserved in bacteria. Taken together, our data reveal that the secretion system plays an important role in determining the organization and functioning of the cytoskeletal system in bacteria.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Canais de Translocação SEC/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Canais de Translocação SEC/metabolismo , Proteínas SecA
13.
Front Microbiol ; 8: 2695, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387047

RESUMO

Although the list of proteins that localize to the bacterial cell poles is constantly growing, little is known about their temporal behavior. EI, a major protein of the phosphotransferase system (PTS) that regulates sugar uptake and metabolism in bacteria, was shown to form clusters at the Escherichia coli cell poles. We monitored the localization of EI clusters, as well as diffuse molecules, in space and time during the lifetime of E. coli cells. We show that EI distribution and cluster dynamics varies among cells in a population, and that the cluster speed inversely correlates with cluster size. In growing cells, EI is not assembled into clusters in almost 40% of the cells, and the clusters in most remaining cells dynamically relocate within the pole region or between the poles. In non-growing cells, the fraction of cells that contain EI clusters is significantly higher, and dispersal of these clusters is often observed shortly after exiting quiescence. Later, during growth, EI clusters stochastically re-form by assembly of pre-existing dispersed molecules at random time points. Using a fluorescent glucose analog, we found that EI function inversely correlates with clustering and with cluster size. Thus, activity is exerted by dispersed EI molecules, whereas the polar clusters serve as a reservoir of molecules ready to act when needed. Taken together our findings highlight the spatiotemporal distribution of EI as a novel layer of regulation that contributes to the population phenotypic heterogeneity with regard to sugar metabolism, seemingly conferring a survival benefit.

14.
Curr Opin Microbiol ; 33: 83-90, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27450542

RESUMO

Bacterial cells are intricately organized, despite the lack of membrane-bounded organelles. The extremely crowded cytoplasm promotes macromolecular self-assembly and formation of distinct subcellular structures, which perform specialized functions. For example, the cell poles act as hubs for signal transduction complexes, thus providing a platform for the coordination of optimal cellular responses to environmental cues. Distribution of macromolecules is mostly mediated via specialized transport machineries, including the MreB cytoskeleton. Recent evidence shows that RNAs also specifically localize within bacterial cells, raising the possibility that gene expression is spatially organized. Here we review the current understanding of where things are in bacterial cells and discuss emerging questions that need to be addressed in the future.


Assuntos
Bactérias/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , RNA Bacteriano/genética , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , DNA Bacteriano/genética , Transdução de Sinais
15.
Methods ; 98: 99-103, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26707207

RESUMO

The subcellular localization of RNA transcripts provides important insights into biological processes. Hence, understanding the mechanisms underlying RNA targeting is a high priority aim of modern cell biology. The advancements in imaging techniques, such as in situ hybridization and live-cell imaging, coupled with the evolution in optical microscopy led to the discovery that bacterial RNAs, despite the lack of nucleus, are specifically localized. Here we describe the methods used to study RNA localization in bacteria and their applications and discuss their advantages and limitations.


Assuntos
Bactérias/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Imagem Molecular/métodos , RNA Bacteriano/química , RNA Mensageiro/química , Coloração e Rotulagem/métodos , Aptâmeros de Nucleotídeos/química , Bactérias/genética , Bactérias/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização in Situ Fluorescente/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica
16.
J Mol Microbiol Biotechnol ; 25(2-3): 143-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26159075

RESUMO

BglG/LicT-like proteins are transcriptional antiterminators that prevent termination of transcription at intrinsic terminators by binding to ribonucleic antiterminator (RAT) sites and stabilizing an RNA conformation which is mutually exclusive with the terminator structure. The known RAT sites, which are located in intergenic regions of sugar utilization operons, show low sequence conservation but significant structural analogy. To assess the prevalence of RATs in bacterial genomes, we employed bioinformatic tools that describe RNA motifs based on both sequence and structural constraints. Using descriptors with different stringency, we searched the genomes of Escherichiacoli K12, uropathogenic E. coli and Bacillus subtilis for putative RATs. Our search identified all known RATs and additional putative RAT elements. Surprisingly, most putative RATs do not overlap an intrinsic terminator and many reside within open reading frames (ORFs). The ability of one of the putative RATs, which is located within an antiterminator-encoding ORF and does not overlap a terminator, to bind to its cognate antiterminator protein in vitro and in vivo was confirmed experimentally. Our results suggest that the capacity of RAT elements has been exploited during evolution to mediate activities other than antitermination, for example control of transcription elongation or of RNA stability.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias , Sequência Conservada , Escherichia coli/genética , Genoma Bacteriano , RNA Bacteriano/genética , Proteínas de Ligação a RNA , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Conformação de Ácido Nucleico , Óperon , RNA Bacteriano/química , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Regiões Terminadoras Genéticas , Transcrição Gênica
17.
RNA Biol ; 11(8): 1051-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482897

RESUMO

One of the most important discoveries in the field of microbiology in the last two decades is that bacterial cells have intricate subcellular organization. This understanding has emerged mainly from the depiction of spatial and temporal organization of proteins in specific domains within bacterial cells, e.g., midcell, cell poles, membrane and periplasm. Because translation of bacterial RNA molecules was considered to be strictly coupled to their synthesis, they were not thought to specifically localize to regions outside the nucleoid. However, the increasing interest in RNAs, including non-coding RNAs, encouraged researchers to explore the spatial and temporal localization of RNAs in bacteria. The recent technological improvements in the field of fluorescence microscopy allowed subcellular imaging of RNAs even in the tiny bacterial cells. It has been reported by several groups, including ours that transcripts may specifically localize in such cells. Here we review what is known about localization of RNA and of the pathways that determine RNA fate in bacteria, and discuss the possible cues and mechanisms underlying these distribution patterns.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Transporte Proteico , RNA Bacteriano/genética , Bactérias/ultraestrutura , Proteínas de Bactérias/metabolismo , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , RNA Bacteriano/isolamento & purificação , RNA não Traduzido/genética , RNA não Traduzido/ultraestrutura
18.
Infect Immun ; 82(10): 4241-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25069986

RESUMO

The metV genomic island in the chromosome of uropathogenic Escherichia coli (UPEC) encodes a putative transcription factor and a sugar permease of the phosphotransferase system (PTS), which are predicted to compose a Bgl-like sensory system. The presence of these two genes, hereby termed pafR and pafP, respectively, has been previously shown to correlate with isolates causing clinical syndromes. We show here that deletion of both genes impairs the ability of the resulting mutant to infect the CBA/J mouse model of ascending urinary tract infection compared to that of the parent strain, CFT073. Expressing the two genes in trans in the two-gene knockout mutant complemented full virulence. Deletion of either gene individually generated the same phenotype as the double knockout, indicating that both pafR and pafP are important to pathogenesis. We screened numerous environmental conditions but failed to detect expression from the promoter that precedes the paf genes in vitro, suggesting that they are in vivo induced (ivi). Although PafR is shown here to be capable of functioning as a transcriptional antiterminator, its targets in the UPEC genome are not known. Using microarray analysis, we have shown that expression of PafR from a heterologous promoter in CFT073 affects expression of genes related to bacterial virulence, biofilm formation, and metabolism. Expression of PafR also inhibits biofilm formation and motility. Taken together, our results suggest that the paf genes are implicated in pathogenesis and that PafR controls virulence genes, in particular biofilm formation genes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Locomoção , Camundongos , Camundongos Endogâmicos CBA , Análise em Microsséries , Proteínas de Transporte de Monossacarídeos/genética , Fatores de Transcrição/genética , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/genética , Virulência , Fatores de Virulência/genética
19.
Biochim Biophys Acta ; 1843(8): 1457-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24263243

RESUMO

Proteins of all living organisms must reach their subcellular destination to sustain the cell structure and function. The proteins are transported to one of the cellular compartments, inserted into the membrane, or secreted across the membrane to the extracellular milieu. Cells have developed various mechanisms to transport proteins across membranes, among them localized translation. Evidence for targeting of Messenger RNA for the sake of translation of their respective protein products at specific subcellular sites in many eukaryotic model organisms have been accumulating in recent years. Cis-acting RNA localizing elements, termed RNA zip-codes, which are embedded within the mRNA sequence, are recognized by RNA-binding proteins, which in turn interact with motor proteins, thus coordinating the intracellular transport of the mRNA transcripts. Despite the rareness of conventional organelles, first and foremost a nucleus, pieces of evidence for mRNA localization to specific subcellular domains, where their protein products function, have also been obtained for prokaryotes. Although the underlying mechanisms for transcript localization in bacteria are yet to be unraveled, it is now obvious that intracellular localization of mRNA is a common mechanism to spatially localize proteins in both eukaryotes and prokaryotes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Transporte Proteico , Transporte de RNA , RNA Mensageiro/metabolismo , Bactérias/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo
20.
mBio ; 4(5): e00443-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24129255

RESUMO

UNLABELLED: The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved "pole-like" sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. IMPORTANCE: Despite their tiny size and the scarcity of membrane-bounded organelles, bacteria are capable of sorting macromolecules to distinct subcellular domains, thus optimizing functionality of vital processes. Understanding the cues that organize bacterial cells should provide novel insights into the complex organization of higher organisms. Previously, we have shown that the general proteins of the phosphotransferase system (PTS) signaling system, which governs utilization of carbon sources in bacteria, localize to the poles of Escherichia coli cells. Here, we show that geometric cues, i.e., strong negative membrane curvature, mediate positioning of the PTS proteins. Furthermore, localization to negatively curved regions seems to support the PTS functionality.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfotransferases (Aceptor do Grupo Nitrogenado)/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosfotransferases (Aceptor do Grupo Nitrogenado)/genética , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA