Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Water Res ; 265: 122197, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39137457

RESUMO

Advancements in anaerobic membrane bioreactor (AnMBR) technology have opened up exciting possibilities for sustaining precise water quality control in wastewater treatment and reuse. This approach not only presents an opportunity for energy generation and recovery but also produces an effluent that can serve as a valuable nutrient source for crop cultivation in hydroponic controlled environment agriculture (CEA). In this perspective article, we undertake a comparative analysis of two approaches to municipal wastewater utilization in agriculture. The conventional method, rooted in established practices of conventional activated sludge (CAS) wastewater treatment for soil/land-based agriculture, is contrasted with a new paradigm that integrates AnMBR technology with hydroponic (soilless) CEA. This work encompasses various facets, including wastewater treatment efficiency, effluent quality, resource recovery, and sustainability metrics. By juxtaposing the established methodologies with this emerging synergistic model, this work aims to shed light on the transformative potential of the integration of AnMBR and hydroponic-CEA for enhanced agricultural sustainability and resource utilization.

2.
Membranes (Basel) ; 13(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837737

RESUMO

This study investigates three types of organic matter, namely algal organic matter (AOM), bacterial organic matter (BOM), and humic organic matter (HOM). These organics are different in properties and chemical composition. AOM, BOM and HOM were compared in terms of organic content, fouling behavior, and removal efficiency in ceramic UF filtration. UF experiments were conducted at a constant flux mode using 5 kDa and 50 kDa ceramic membranes. Results showed that 5 kDa membrane removed more transparent exopolymer particles (TEP)/organics than 50 kDa membranes, but less fouling formation for all the three types of organic matters tested. Membranes exhibited the lowest trans-membrane pressure (TMP) during the filtration of HOM, most probably due to the high porosity of the HOM cake layer, contributed by big HOM aggregates under Ca bridging effect. AOM shows the highest MFI-UF (modified fouling index-ultrafiltration) and TMP (transmembrane pressure) values among the three organics and during all filtration cycles for both membranes. The AOM fouling layer is well known for having high fouling potential due to its compressibility and compactness which increase the TMP and eventually the MFI values. AOM and BOM organics exhibited a similar fouling behavior and mechanism. Furthermore, the divalent cations such as calcium showed a significant impact on membrane fouling. That is probably because calcium ions made the membranes and organic matter less negatively charged and easier to deposit on membranes, thus, enhancing the membrane fouling significantly.

3.
Water Res ; 224: 119094, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115159

RESUMO

Biofouling of membrane surfaces poses significant operational challenges and costs for desalination and wastewater reuse applications. Ultraviolet (UV) light can control biofilms while reducing chemical usage and disinfection by-products, but light deliveries to membrane surfaces in spiral wound geometries has been a daunting challenge. Thin and flexible nano-enabled side-emitting optical fibers (SEOFs) are novel light delivery devices that enable disinfection or photocatalytic oxidation by radiating UV light from light-emitting diodes (LEDs). We envision SEOFs as an active membrane spacer to mitigate biofilm formation on reverse osmosis (RO) membranes. A lab-scale RO membrane apparatus equipped with SEOFs allowed comparison of UV-A (photocatalysis-enabled) versus UV-C (direct photolysis disinfection). Compared against systems without any light exposure, systems with UV-C light formed thinner-but denser-biofilms, prevented permeate flux declines due to biofouling, and maintained the highest salt rejection. Results were corroborated by in-situ optical coherence tomography and ex-situ measurements of biofilm growth on the membranes. Transcriptomic analysis showed that UV-C SEOFs down-regulated quorum sensing and surface attachment genes. In contrast, UV-A SEOFs upregulated quorum sensing, surface attachment, and oxidative stress genes, resulting in higher extracellular polymeric substances (EPS) accumulation on membrane surfaces. Overall, SEOFs that deliver a low fluence of UV-C light onto membrane surfaces are a promising non-chemical approach for mitigating biofouling formation on RO membranes.


Assuntos
Incrustação Biológica , Purificação da Água , Biofilmes , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Fibras Ópticas , Osmose , Raios Ultravioleta , Águas Residuárias , Purificação da Água/métodos
5.
Environ Sci Technol ; 56(2): 1244-1256, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34962797

RESUMO

The increasing occurrence of harmful algal blooms (HABs) in surface waters may increase the input of algal organic matter (AOM) in drinking water. The formation of halogenated disinfection byproducts (DBPs) during combined chlorination and chloramination of AOM and natural organic matter (NOM) in the presence of bromide and iodide and haloform formation during halogenation of model compounds were studied. Results indicated that haloform/halogen consumption ratios of halogens reacting with amino acids (representing proteins present in AOM) follow the order iodine > bromine > chlorine, with ratios for iodine generally 1-2 orders of magnitude greater than those for chlorine (0.19-2.83 vs 0.01-0.16%). This indicates that iodine is a better halogenating agent than chlorine and bromine. In contrast, chlorine or bromine shows higher ratios for phenols (representing the phenolic structure of humic substances present in NOM). Consistent with these observations, chloramination of AOM extracted from Microcystis aeruginosa in the presence of iodide produced 3 times greater iodinated trihalomethanes than those from Suwannee River NOM isolate. Cytotoxicity and genotoxicity of disinfected algal-impacted waters evaluated by Chinese hamster ovary cell bioassays both follow the order chloramination > prechlorination-chloramination > chlorination. This trend is in contrast to additive toxicity calculations based on the concentrations of measured DBPs since some toxic iodinated DBPs were not identified and quantified, suggesting the necessity of experimentally analyzing the toxicity of disinfected waters. During seasonal HAB events, disinfection practices warrant optimization for iodide-enriched waters to reduce the toxicity of finished waters.


Assuntos
Desinfetantes , Iodo , Poluentes Químicos da Água , Purificação da Água , Animais , Bromo/química , Células CHO , Cloro/química , Cricetinae , Cricetulus , Desinfetantes/química , Desinfecção/métodos , Halogenação , Halogênios , Iodetos , Iodo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
6.
ACS Sustain Chem Eng ; 9(35): 11616-11634, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34777924

RESUMO

Critical metals, identified from supply, demand, imports, and market factors, include rare earth elements (REE), platinum group metals, precious metals, and other valuable metals such as lithium, cobalt, nickel, and uranium. Extraction of metals from U.S. saline aqueous, emphasizing saline, sources is explored as an alternative to hardrock ore mining. Potential aqueous sources include seawater, desalination brines, oil-and-gas produced waters, geothermal aquifers, and acid mine drainage, among others. A feasibility assessment reveals opportunities for recovery of lithium, strontium, magnesium, and several REE from select sources, in quantities significant for U.S. manufacturing and for reduction of U.S. reliance on international supply chains. This is a conservative assessment given that water quality data are lacking for a significant number of critical metals in certain sources. The technology landscape for extraction and recovery of critical metals from aqueous sources is explored, identifying relevant processes along with knowledge gaps. Our analysis indicates that aqueous mining would result in much lower environmental impacts on water, air, and land than ore mining. Preliminary assessments of the economics and energy consumption of recovery show potential for recovery of critical metals.

7.
Water Res ; 184: 116145, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771689

RESUMO

Seasonal algal blooms in surface waters can impact water quality through an input of algal organic matter (AOM) to the pool of dissolved organic matter as well as the release of cyanotoxins. The formation and speciation of disinfection byproducts (DBPs) during chlorination of algal-impacted waters, collected from growth of Microcystis aeruginosa were studied. Second-order rate constants for the reactions of microcystins (MCs) with chlorine and bromine were determined. Finally, the toxicity of chlorinated algal-impacted waters was evaluated by Chinese hamster ovary (CHO) cytotoxicity and genotoxicity assays. Under practical water treatment conditions, algal-impacted waters produced less regulated trihalomethanes (THMs) and haloacetic acids (HAAs), haloacetonitriles (HANs), and total organic halogen (TOX) than natural organic matter (NOM). For example, the weight ratios of DBP formation from AOM to NOM (median levels) were approximately 1:5, 1:3, 1:2 and 1:3 for THMs, HAAs, HANs, and TOX, respectively. Increasing initial bromide level significantly enhanced THM and HAN concentrations, and therefore unknown TOX decreased. The second-order rate constant for the reactions of MC-LR (the most common MC species) with chlorine was 60 M-1 s-1 at pH 7.5 and 21 °C, and the rate constants for MC congeners follow the order: MC-WR > MC-LW > MC-YR > MC-LY > MC-LR ≈ MC-RR. The reaction rate constant of bromine with MC-LR is two orders of magnitude higher than that of chlorine. Unchlorinated algal-impacted waters were toxic owning to the presence of MCs, and chlorination enhanced their cytotoxicity and genotoxicity due to the formation of toxic halogenated DBPs. However, the toxicity of treated waters depended on the evolution of cyanotoxins and formation of DBPs (particularly unknown or emerging DBPs).


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Células CHO , Cloro , Cricetinae , Cricetulus , Desinfecção , Halogenação , Trialometanos/análise , Trialometanos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Sci Total Environ ; 697: 134142, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31484087

RESUMO

The formation of iodinated disinfection byproducts (I-DBPs) in drinking waters is of a concern due to their higher cyto- and genotoxicity than their chlorinated and brominated analogues. This study investigated the formation of I-DBPs under chloramination conditions using preformed chloramine and associated cyto- and geno-toxicities obtained with Chinese Hamster Ovary (CHO) cell assay. Cyto- and geno-toxicity of the samples were also calculated using DBP toxicity index values and correlated with total organic halide (TOX) formation. In low iodide (I-) (0.32 µM, 40 µg L-1) water, increasing dissolved organic carbon (DOC) concentration of selected waters from 0.1 to 0.25 mg L-1 increased the formation of iodinated trihalomethanes (I-THMs), while further increases from 0.25 to 4 mg L-1 produced an opposite trend. In high iodide water (3.2 µM, 400 µg L-1), increasing DOC from 0.5 to 4 mg L-1 gradually increased the I-THM formation, while a decrease was observed at 5.4 mg L-1 DOC. Iodoform was the most influenced species from the changes in DOC concentration. While increasing the initial iodide concentration from 0 to 5 µM increased the formation of iodoform, it did not make any considerable impact on the formation of other I-THMs. The measured cytotoxicity of samples was significantly correlated with increasing DOC concentration. Unknown TOCl and TOI showed a high correlation with measured cytotoxicity, while calculated total organic chlorine (TOCl) and total organic iodine (TOI) did not correlate. The comparison of measured and calculated cytotoxicity values showed that the calculated values do not always represent the overall cytotoxicity, since the formation of unknown DBPs are not taken into consideration during the toxicity calculations.


Assuntos
Desinfetantes/análise , Desinfecção , Iodetos/análise , Poluentes Químicos da Água/análise , Animais , Células CHO , Cloraminas , Cricetulus , Purificação da Água
9.
J Hazard Mater ; 380: 120894, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325689

RESUMO

A lab-scale mesophilic anaerobic membrane bioreactor (AnMBR) was used to treat synthetic municipal wastewater with variable concentrations of antibiotic Sulfamethoxazole (SMX) and bulk organics in this study. The removal and biotransformation pathway of SMX in the AnMBR were systematically investigated during a 170 d of operation under hydraulic retention time of 1 d. Average SMX removal was 97.1% under feed SMX of 10-1000 µg/L, decreasing to 91.6 and 88.0% under feed SMX of 10,000 and 100,000 µg/L due to the inhibition effects of high SMX loading rate on anaerobic microorganisms. SMX biotransformation followed pseudo-first order reaction kinetics based on SMX removal independent of feed SMX of 10-1000 µg/L during continuous operation and also in a batch test under initial SMX of 100,000 µg/L. According to the identified 7 transformation products (TPs) by gas chromatography-mass spectrometry, the biotransformation pathway of SMX from municipal wastewater treatment via AnMBR was first proposed to consist of 2 primary routes: 1) Butylbenzenesulfonamide without antibiotic toxicity dominated under feed SMX of 10-100 µg/L; 2) Sulfanilamide with much lower antibiotic toxicity than SMX dominated under feed SMX of 1000-100000 µg/L, further transforming to secondary TPs (4-Aminothiophenol, Aniline, Acetylsulfanilamide) and tertiary TPs (4-Acetylaminothiophenol, Acetylaniline).


Assuntos
Anti-Infecciosos/isolamento & purificação , Reatores Biológicos , Biotransformação , Membranas Artificiais , Sulfametoxazol/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Anaerobiose , Anti-Infecciosos/metabolismo , Sulfametoxazol/metabolismo , Poluentes Químicos da Água/metabolismo
10.
Water Res ; 162: 115-126, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31255781

RESUMO

The increasing occurrence of harmful algal blooms in surface waters may increase the input of algal organic matter (AOM) to the dissolved organic matter pool. The formation of iodinated trihalomethanes (I-THMs) and noniodinated disinfection byproducts (DBPs) in synthetic waters containing AOM extracted from Microcystis aeruginosa was investigated in chloramination (preformed and in-situ formed chloramine, NH2Cl and Cl2-NH2Cl, respectively) and chlorination (Cl2) processes. AOM is much more favorable for iodine incorporation than natural organic matter (NOM). For example, the formation of I-THM from AOM is much higher than NOM isolate extracted from treated water (e.g., 3.5 times higher in the NH2Cl process), and thus higher iodine utilization and substitution factors from AOM were observed. Short contact time (2 min) chlorination in Cl2-NH2Cl process leading to the formation of halogenated intermediates favored I-THM formation, compared with NH2Cl process. However, further increasing chlorine contact time from 5 min to 24 h facilitated the conversion from iodide to iodate and thus I-THM formation decreased. Meanwhile, the formation of noniodinated THM4, haloacetonitriles (HANs), and haloacetaldehydes (HALs) increased. Factors including concentrations of AOM and bromide, pH, and chlorine/nitrogen ratios influenced the formation of I-THMs and noniodinated DBPs. To evaluate the benefit of mitigating I-THM formation over the risk of noniodinated DBP formation, measured DBPs were weighed against their mammalian cell toxicity indexes. Increasing the chlorine exposure increased the calculated cytotoxicity based on concentrations of measured I-THMs and noniodinated DBPs since unregulated HANs and HALs were the controlling agents.


Assuntos
Desinfetantes , Microcystis , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Cloro , Desinfecção , Halogenação , Trialometanos
11.
Environ Sci Technol ; 53(7): 3488-3498, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848585

RESUMO

In this study, we propose a novel module design to integrate forward osmosis (FO) and membrane distillation (MD). The two processes are sealed in one module and operated simultaneously, making the system compact and suitable for a wide range of applications. To evaluate the system under large-scale module operating conditions, FO and MD experiments were performed separately. The effect of draw solution (DS) temperature on the FO performance was first assessed in terms of flux, reverse salt flux (RSF), and specific RSF (SRSF). While a higher DS temperature resulted in an increased RSF, a higher FO flux was achieved, with a lower SRSF. The influence of DS concentration on the MD performance was then investigated in terms of flux and salt rejection. High DS concentration had a slightly negative impact on MD water vapor flux, but the MD membrane was a complete barrier for DS salts. The FO-MD integrated module was simulated based on mass balance equations. Results indicated that initial DS (MD feed) flow rate and concentration are the most important factors for stable operation of the integrated module. Higher initial DS flow rate and lower initial DS concentration can achieve a higher permeate rate of the FO-MD module.


Assuntos
Destilação , Purificação da Água , Membranas Artificiais , Osmose , Temperatura
12.
Sci Total Environ ; 646: 1172-1181, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235603

RESUMO

This study examined the interplay between bromide and DOM characteristics, described with SUVA254, in terms of formation and speciation of selected DBPs [trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetonitriles (HANs)] during chlorination under various water treatment conditions. Cytotoxicity evaluations were also conducted based on the types and amounts of DBPs formed and their corresponding cytotoxicity index values. The results showed that the formation of THMs and HAAs increased as the specific UV absorbance at 254 nm (SUVA254) of the waters increased; however, there was no clear trend for HANs. THM and HAN formation increased with increasing bromide levels, while there was no bromide effect on the HAA formation. Lower HAA5 (monochloroaceticacid, monobromoaceticacid, dichloroaceticacid, trichloroaceticacid, dibromoaceticacid) to HAA9 (monochloroaceticacid, monobromoaceticacid, dichloroaceticacid, trichloroaceticacid, dibromoaceticacid, bromochloroaceticacid, bromodichloroaceticacid, dibromochloroaceticacid, tribromoaceticacid) ratios, independent of SUVA254, were observed with increasing bromide levels. Bromine substitution factor (BSF) values were in the order of BSFDHAN > BSFTHAA > BSFTHM ≈ BSFDHAA. BSF values for all class of DBPs decreased with increasing SUVA254. TOX formation increased with increasing SUVA254 without an impact of bromide concentration. UTOX/TOX ratios were higher in treated low SUVA254 waters than raw waters having higher SUVA254 values, and they decreased with increasing initial bromide concentration in all sources. Increasing bromide concentration from 0.5 µM to 10 µM elevated the calculated cytotoxicity index values of waters. Despite their much lower (approximately ~10 times) formation as compared to THMs and HAAs, HANs controlled the calculated cytotoxicity of studied waters.

13.
Bioresour Technol ; 268: 648-657, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144738

RESUMO

The removal of 26 organic micropollutants (OMPs) in synthetic municipal wastewater was investigated via the process of aerobic sequential batch reactor (SBR) alone and SBR followed by nanofiltration (NF). SBR-NF performed better than SBR alone, ascribed to the contribution of NF: 1) complete biomass rejection resulted in diverse microbial community and much less fluctuated performance than SBR alone, and 2) direct OMPs rejection (74-98%) increased their retention time in SBR and thus overall removal via biodegradation/transformation and accumulation in SBR. Nine OMPs showed high biological removal (over 60%), 6 OMPs showed moderate biological removal (30-70%) and 10 OMPs showed low biological removal (below 40%). Most readily and moderately biodegradable OMPs contained strong electron donating group. Most refractory OMPs contained strong electron withdrawing group and/or halogen substitute. The batch addition of powdered activated carbon (100 mg/L) into SBR showed short term sorption performance for both OMPs and bulk organics.


Assuntos
Carvão Vegetal , Eliminação de Resíduos Líquidos , Reatores Biológicos , Águas Residuárias , Poluentes Químicos da Água
14.
Water Res ; 142: 313-324, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890479

RESUMO

Seasonal algal blooms in freshwater and marine water can increase the input of algal organic matter (AOM) to the pool of dissolved organic matter. The impact of bromide (Br-) and iodide (I-) on the formation of regulated and unregulated disinfection byproducts (DBPs) was studied from chlorination of AOM solutions extracted from three species of cultured isolates of freshwater and marine algae (Microcystis aeruginosa (MA), Synechococcus (SYN), and Alexandrium tamarense (AT)). Comparable concentrations of DBPs were formed from three types of AOM. In the absence of Br-, trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetaldehydes (HALs) were the main groups of DBP formed, and haloacetonitriles (HANs) were formed at lower concentrations. In contrast, the formation of iodinated THMs was <8 nM (1.7 µg/L) since most of initial I- was oxidized to iodate. Increasing initial Br- concentrations increased the formation of THMs and HANs, while concentrations of total organic halogen and HAA remained stable. On the contrary, total HAL concentrations decreased due to the instability of bromated HALs. Decreasing the specific UV absorbance (SUVA) value of AOM favours bromine substitution since bromine more preferentially reacts with low reactivity organic matter than chlorine. Increasing the pH enhanced the formation of THMs but decreased the formation of HANs. Concentrations of HANs and HALs decreased at high pH (e.g., 9.0), high initial chlorine concentration and long reaction time due to the decomposition. Based on the cytotoxicity calculations, unregulated HANs and HALs were the main contributors for the total toxicity of DBPs measured, even though based on the weight regulated THMs and HAAs predominated.


Assuntos
Cloro/química , Dinoflagellida , Desinfetantes/química , Microcystis , Synechococcus , Poluentes Químicos da Água/química , Brometos/química , Bromo/química , Desinfecção , Água Doce , Halogenação , Iodo/química , Água do Mar , Trialometanos/química , Purificação da Água
15.
J Environ Sci (China) ; 58: 183-190, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774607

RESUMO

In the 1980s, a case-control epidemiologic study was conducted in Iowa (USA) to analyze the association between exposure to disinfection by-products (DBPs) and bladder cancer risk. Trihalomethanes (THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture. Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was 156µg/L compared to 74µg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels (>96µg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure.


Assuntos
Água Potável/química , Exposição Ambiental/estatística & dados numéricos , Modelos Químicos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfecção/métodos , Seguimentos , Humanos , Iowa/epidemiologia , Neoplasias/epidemiologia , Medição de Risco/métodos , Trialometanos/análise , Abastecimento de Água/estatística & dados numéricos
16.
Water Res ; 122: 580-590, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28628880

RESUMO

Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH4-Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH4-Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study.


Assuntos
Ácido Oxálico/química , Águas Residuárias , Purificação da Água , Membranas Artificiais , Osmose
17.
Bioresour Technol ; 239: 82-86, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28500892

RESUMO

Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8±2.1A/m2-anode in MECs operated at a set anode potential of +0.2V vs. Ag/AgCl (+0.405V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool.


Assuntos
Fontes de Energia Bioelétrica , Sais , Bactérias , Eletrólise , Extremófilos , Oceano Índico
18.
Environ Sci Technol ; 50(19): 10596-10605, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27607546

RESUMO

The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1Ω/□). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.


Assuntos
Membranas Artificiais , Nanotubos de Carbono , Osmose , Águas Residuárias/química , Purificação da Água
19.
Water Res ; 102: 485-493, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27403871

RESUMO

This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1-0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency.


Assuntos
Ultrafiltração , Purificação da Água , Filtração , Membranas , Membranas Artificiais , Água do Mar/química
20.
Bioresour Technol ; 218: 882-91, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27441825

RESUMO

Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.


Assuntos
Reatores Biológicos/microbiologia , Esgotos/microbiologia , Águas Residuárias/química , Poluentes da Água/análise , Aerobiose , Anaerobiose , Bactérias/genética , Membranas Artificiais , Poluentes da Água/efeitos adversos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA