Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2386, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287091

RESUMO

Renewable energy generation has become the general trend with increasing environmental problems. However, the instability of renewable energy generation and the diversification of user demand are highlighted and the optimization of energy scheduling has become the key to solve the problem. This study introduces an energy scheduling optimization model tailored for building integrated energy systems, encompassing elements like gas turbines, wind and solar modules, ground source heat pumps, electric vehicles, central air-conditioning, and energy storage. The model prioritizes economic efficiency and minimal carbon emissions by first collecting and pre-processing the data for the regional building conformance, and then utilizing an enhanced multi-objective genetic whale algorithm. Evaluations on a regional complex building highlighted the algorithm's robust convergence and stability. The resulting optimized scheduling effectively balances economic and environmental concerns, reducing costs by about 92.896 yuan per day on average and reducing carbon emissions by about 0.091 tons, promoting efficient system operation, reducing costs and mitigating environmental impacts.

2.
Nanoscale ; 16(4): 1915-1923, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170856

RESUMO

Wireless sensor networks have developed quickly in recent years, and the use of self-powered technology to replace traditional external power sources to power sensor nodes has become an urgent problem that needs to be solved. As an entirely novel type of self-powered technology, the triboelectric nanogenerator (TENG) has attracted widespread attention, but the inability to achieve adaptive adjustment based on the vibration environment has restricted the development of TENGs. Here, a magnetic liquid triboelectric nanogenerator (ML-TENG) is designed to harvest vibration energy to power sensing nodes, and ML-TENG tuning is achieved using a magnetic liquid to adapt to different vibration environments. The electrical performance of the ML-TENG was investigated by theoretical, experimental, and numerical research. According to the results, the developed ML-TENG responds well to low-frequency vibration, and the instantaneous power is up to 5.40 nW. The tuning function is achieved by adjusting the magnetic field, and the natural frequency can be adjusted between 6.6 Hz and 7.6 Hz. The strong linear connection between the output voltage of the ML-TENG and the external environment's vibration amplitude promotes the monitoring of the vibration environment and lays the groundwork for the creation of wireless sensor networks.

3.
J Colloid Interface Sci ; 633: 291-302, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36459934

RESUMO

Titanosilicate-1 zeolites (TS-1) as one of the most commonly used catalysts for alkene epoxidation, construction of hierarchical pores as well as elimination of anatase to promote mass transportation and avoid invalid decomposition of hydrogen peroxide are always desirable yet challenging goals. Here, a novel and unique Ti-based metal organic frameworks (MOFs)-induced synthetic strategy for fabricating anatase-free hierarchical TS-1 was first proposed. All the components of MOFs perform different functions: the uniformly distributed Ti nodes replace conventional tetrabutyl titanate (TBOT) to serve as sole Ti source for constructing zeolite crystal; the separated ligands can be embedded in the zeolite framework and act as template to in situ build hierarchical pore structure; the coordination interaction between Ti nodes and ligands can efficiently avoid the anatase generation by balancing the forming rates of Ti-OH and Si-OH. This synthetic strategy is of general applicability, and two different synthetic routes including traditional hydrothermal process and steam assisted crystallization (SAC) procedure are successfully adopted. The obtained hydrothermal TS-1 and SAC anatase-free samples all possess abundant intercrystalline mesopores of 20-50 nm and even macropores between 50 and 150 nm, improving the conversion over 25 % for 1­hexene epoxidation than TS-1 sample prepared by conventional route. The influences of the amount of Ti MOFs precursor and the crystallization process are studied in detail, and possible synthesis mechanisms are proposed. This MOFs-induced strategy might open up an avenue for the rational design of ideal and hierarchical zeolite to boost the catalytic efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA