Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
ACS Appl Mater Interfaces ; 16(23): 30264-30273, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832451

RESUMO

Despite the advancement of the Internet of Things (IoT) and portable devices, the development of zero-biased sensing systems for the dual detection of light and gases remains a challenge. As an emerging technology, direct energy conversion driven by intriguing physical properties of two-dimensional (2D) materials can be realized in nanodevices or a zero-biased integrated system. In this study, we unprecedentedly attempted to exploit the photostimulated pyrothermoelectric coupling of two-dimensional SnSe for use in zero-biased multimodal transducers for the dual detection of light and gases. We synthesized homogeneous, large-area 6 in SnSe multilayers via a rational synthetic route based on the thermal decomposition of a solution-processed single-source precursor. Zero-biased SnSe transducers for the dual monitoring of light and gases were realized by exploiting the synergistic coupling of the photostimulated pyroelectric and thermoelectric effects of SnSe. The extracted photoresponsivity at 532 nm and NO2 gas responsivity of the SnSe-based transducers corresponded to 1.07 × 10-6 A/W and 13263.6% at 0 V, respectively. To bring universal applicability of the zero-biased SnSe transducers, the wide operation bandwidth photoelectrical properties (visible to NIR) and dynamic current responses toward two NO2/NH3 gases were systematically evaluated.

2.
ACS Appl Mater Interfaces ; 16(22): 28613-28624, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785040

RESUMO

Constructing pertinent nanoarchitecture with abundant exposed active sites is a valid strategy for boosting photocatalytic hydrogen generation. However, the controllable approach of an ideal architecture comprising vertically standing transition metal chalcogenides (TMDs) nanosheets on a 3D graphene network remains challenging despite the potential for efficient photocatalytic hydrogen production. In this study, we fabricated edge-rich 3D structuring photocatalysts involving vertically grown TMDs nanosheets on a 3D porous graphene framework (referred to as 3D Gr). 2D TMDs (MoS2 and WS2)/3D Gr heterostructures were produced by location-specific photon-pen writing and metal-organic chemical vapor deposition for maximum edge site exposure enabling efficient photocatalytic reactivity. Vertically aligned 2D Mo(W)S2/3D Gr heterostructures exhibited distinctly boosted hydrogen production because of the 3D Gr caused by synergetic impacts associated with the large specific surface area and improved density of exposed active sites in vertically standing Mo(W)S2. The heterostructure involving graphene and TMDs corroborates an optimum charge transport pathway to rapidly separate the photogenerated electron-hole pairs, allowing more electrons to contribute to the photocatalytic hydrogen generation reaction. Consequently, the size-tailored heterostructure showed a superior hydrogen generation rate of 6.51 mmol g-1 h-1 for MoS2/3D graphene and 7.26 mmol g-1 h-1 for WS2/3D graphene, respectively, which were 3.59 and 3.76 times greater than that of MoS2 and WS2 samples. This study offers a promising path for the potential of 3D structuring of vertical TMDs/graphene heterostructure with edge-rich nanosheets for photocatalytic applications.

3.
Adv Sci (Weinh) ; 11(23): e2308976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582529

RESUMO

Portable and personalized artificial intelligence (AI)-driven sensors mimicking human olfactory and gustatory systems have immense potential for the large-scale deployment and autonomous monitoring systems of Internet of Things (IoT) devices. In this study, an artificial Q-grader comprising surface-engineered zinc oxide (ZnO) thin films is developed as the artificial nose, tongue, and AI-based statistical data analysis as the artificial brain for identifying both aroma and flavor chemicals in coffee beans. A poly(vinylidene fluoride-co-hexafluoropropylene)/ZnO thin film transistor (TFT)-based liquid sensor is the artificial tongue, and an Au, Ag, or Pd nanoparticles/ZnO nanohybrid gas sensor is the artificial nose. In order to classify the flavor of coffee beans (acetic acid (sourness), ethyl butyrate and 2-furanmethanol (sweetness), caffeine (bitterness)) and the origin of coffee beans (Papua New Guinea, Brazil, Ethiopia, and Colombia-decaffeine), rational combination of TFT transfer and dynamic response curves capture the liquids and gases-dependent electrical transport behavior and principal component analysis (PCA)-assisted machine learning (ML) is implemented. A PCA-assisted ML model distinguished the four target flavors with >92% prediction accuracy. ML-based regression model predicts the flavor chemical concentrations with >99% accuracy. Also, the classification model successfully distinguished four different types of coffee-bean with 100% accuracy.


Assuntos
Nariz Eletrônico , Aprendizado de Máquina , Humanos , Inteligência Artificial , Paladar/fisiologia , Café/química , Odorantes/análise , Olfato/fisiologia , Língua/fisiologia , Óxido de Zinco/química , Análise de Componente Principal
4.
Foods ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472902

RESUMO

This study investigated the impact of Methyl Jasmonate (MeJA) application on the nutritional content and yield of five different colored radish microgreens. Microgreens were produced without substrate and subjected to 0.5 mM and 1.0 mM MeJA treatments on the 7th day, three days before harvest. The parameters measured included yield, dry matter, minerals, amino acids, secondary metabolites such as chlorophylls (Chls), anthocyanins, flavonoids, phenolics, glucosinolates (GSLs), vitamin C, and antioxidant capacity. MeJA at 1.0 mM generally improved yield and dry weight across cultivars, and all microgreens exhibited rich mineral and amino acid composition, with the influence of cultivar being more significant than MeJA treatment. However, MeJA enhanced all cultivars' anthocyanins, GSLs, phenolics, flavonoids, and antioxidant activities. Generally, as the antioxidant capacity is the primary factor influencing the nutritional quality of microgreens, MeJA-treated microgreens, especially with selected superior cultivars such as 'Asia purple' and 'Koregon red', could offer a potential for cultivation of value-added, eco-friendly microgreens with substrate-free cultivation.

5.
Small ; 20(6): e2305311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798936

RESUMO

Structural engineering and hybridization of heterogeneous 2D materials can be effective for advanced supercapacitor. Furthermore, architectural design of electrodes particularly with vertical construction of structurally anisotropic graphene nanosheets, can significantly enhance the electrochemical performance. Herein, MXene-derived TiO2 nanocomposites hybridized with vertical graphene is synthesized via CO2 laser irradiation on MXene/graphene oxide nanocomposite film. Instantaneous photon energy by laser irradiation enables the formation of vertical graphene structures on nanocomposite films, presenting the controlled anisotropy in free-standing film. This vertical structure enables improved supercapacitor performance by forming an open structure, increasing the electrolyte-electrode interface, and creating efficient electron transport path. In addition, the effective oxidation of MXene nanosheets by instantaneous photon energy leads to the formation of rutile TiO2 . TiO2 nanoparticles directly generated on graphene enables the effective current path, which compensates for the low conductivity of TiO2 and enables the functioning of an effective supercapacitor by utilizing its pseudocapacitive properties. The resulting film exhibits excellent specific areal capacitance of 662.9 mF cm-2 at a current density of 5 mA cm-2 . The film also shows superb cyclic stability during 40 000 repeating cycles, maintaining high capacitance. Also, the pseudocapacitive redox reaction kinetics is evaluated, showing fast redox kinetics with potential for high-performance supercapacitor applications.

6.
Front Plant Sci ; 14: 1236055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780508

RESUMO

Growing microgreens on trays without substrate in a vertical multilayered growing unit offers several advantages over traditional agriculture methods. This study investigated the yield performance and nutritional quality of five selections of radish microgreens grown in sprouting trays, without a substrate using only water, in an indoor multilayer cultivation system using artificial light. Various parameters were measured, including fresh weight, dry matter, chlorophyll, minerals, amino acids, phenolics, flavonoids, anthocyanins, vitamin C, glucosinolates, and antioxidant activity with four different in vitro assays. After ten days, the biomass had increased by 6-10 times, and the dry matter varied from 4.75-7.65%. The highest yield was obtained from 'Asia red', while the lowest was from 'Koregon red'. However, 'Koregon red' and 'Asia red' had the highest dry matter. 'Asia red' was found to have the highest levels of both Chls and vitamin C compared to the other cultivars, while 'Koregon red' exhibited the highest levels of total phenolics and flavonoids. Although variations in the levels of individual glucosinolates were observed, there were no significant differences in the total content of glucosinolates among the five cultivars. 'Asia purple' had the highest anthocyanin content, while 'Asia green 2' had the lowest. The K, Mg, and Na concentrations were significantly highest in 'Asia green 2', and the highest Ca was recorded in 'Asia purple'. Overall, 'Asia purple' and 'Koregon red' were the best cultivars in terms of nutritional quality among the tested radish microgreens. These cultivars exhibited high levels of dry weight, total phenolics, flavonoids, anthocyanins, essential and total amino acids, and antioxidant activities. Moreover, the implementation of this vertical cultivation method for microgreens, which relies solely on water and seeds known for their tall shoots during the sprouting could hold promise as a sustainable approach. This method can effectively be utilized for cultivar screening and fulfilling the nutritional and functional needs of the population while minimizing the environmental impacts associated with traditional agriculture practices.

7.
Adv Mater ; 35(46): e2306637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740254

RESUMO

Film-type shape-configurable speakers with tunable sound directivity are in high demand for wearable electronics. Flexible, thin thermoacoustic (TA) loudspeakers-which are free from bulky vibrating diaphragms-show promise in this regard. However, configuring thin TA loudspeakers into arbitrary shapes is challenging because of their low sound pressure level (SPL) under mechanical deformations and low conformability to other surfaces. By carefully controlling the heat capacity per unit area and thermal effusivity of an MXene conductor and substrates, respectively, it fabricates an ultrathin MXene-based TA loudspeaker exhibiting high SPL output (74.5 dB at 15 kHz) and stable sound performance for 14 days. Loudspeakers with the parylene substrate, whose thickness is less than the thermal penetration depth, generated bidirectional and deformation-independent sound in bent, twisted, cylindrical, and stretched-kirigami configurations. Furthermore, it constructs parabolic and spherical versions of ultrathin, large-area (20 cm × 20 cm) MXene-based TA loudspeakers, which display sound-focusing and 3D omnidirectional-sound-generating attributes, respectively.

8.
Small ; 19(41): e2301395, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309283

RESUMO

The precisely tailored refractive index of optical materials is the key to utilizing and manipulating light during its propagation through the matrix, thereby improving their application performances. In this paper, mesoporous metal fluoride films with engineered composition (MgF2 :LaF3 ) are demonstrated to achieve finely tunable refractive indices. These films are prepared using a precursor-derived one-step assembly approach via the simple mixing of precursor solutions (Mg(CF3 OO)2 and La(CF3 OO)3 ); then pores are formed simultaneously during solidification owing to the inherent instability of La(CF3 OO)3 . The mesoporous structures are realized through Mg(CF3 OO)2 and La(CF3 OO)3 ions, which interacted with each other based on their electrostatic forces, providing a wide range of refractive indices (from 1.37 to 1.16 at 633 nm). Furthermore, it is systematically several MgF2(1-x) -LaF3(x) layers with different compositions (x = 0.0, 0.3, and 0.5) to form the graded refractive index coating that is optically consecutive between the substrate and the air for broadband and omnidirectional antireflection. An average transmittance of ≈98.03% (400-1100 nm) is achieved with a peak transmittance of ≈99.04% (at 571 nm), and the average antireflectivity is maintained at ≈15.75% even at an incidence of light of 65° (400-850 nm).

9.
Small ; 19(22): e2206350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866498

RESUMO

The recent introduction of alkali metal halide catalysts for chemical vapor deposition (CVD) of transition metal dichalcogenides (TMDs) has enabled remarkable two-dimensional (2D) growth. However, the process development and growth mechanism require further exploration to enhance the effects of salts and understand the principles. Herein, simultaneous predeposition of a metal source (MoO3 ) and salt (NaCl) by thermal evaporation is adopted. As a result, remarkable growth behaviors such as promoted 2D growth, easy patterning, and potential diversity of target materials can be achieved. Step-by-step spectroscopy combined with morphological analyses reveals a reaction path for MoS2 growth in which NaCl reacts separately with S and MoO3 to form Na2 SO4 and Na2 Mo2 O7 intermediates, respectively. These intermediates provide a favorable environment for 2D growth, including an enhanced source supply and liquid medium. Consequently, large grains of monolayer MoS2 are formed by self-assembly, indicating the merging of small equilateral triangular grains on the liquid intermediates. This study is expected to serve as an ideal reference for understanding the principles of salt catalysis and evolution of CVD in the preparation of 2D TMDs.

10.
Small Methods ; 7(4): e2201539, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36825664

RESUMO

MXenes possess the characteristics required for high-performance supercapacitors, such as high metallic conductivity and electrochemical activity, but their full potential remains unrealized owing to their tendency to self-restack when fabricated into an electrode. Designing an MXene interlayer with an effective intercalant has, therefore, become an important criterion to alleviate the restacking issue while also synergistically interact with MXene to further improve its electrochemical activity. This study reports the intercalation of 1D π-d conjugated coordination polymer (Ni-BTA) within the Ti3 C2 Tx nanosheet for the fabrication of a highly efficient supercapacitor electrode. Ni-BTA, which consists of a nickel center and 1,2,4,5-benzenetetramine (BTA) organic chain, is uniformly intercalated by direct synthesis on the abundant oxygen terminals on the Ti3 C2 Tx nanosheet surface. The intercalated Ni-BTA acts as an effective charge carrier transportation pathway through its 1D stretched delocalized π-d electrons while participating in pseudocapacitive activity with the Ni centers. As a result, the Ni-BTA/MXene film exhibits excellent rate performance and a gravimetric specific capacitance of 264.4 F g-1 at 5 mV s-1 . This magnitude is retained up to 94.6% after 10 000 cycles. The present study provides insights into the design of MXene interlayers for the fabrication of highly robust and stable supercapacitors.

11.
ACS Omega ; 6(36): 23155-23162, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549116

RESUMO

A challenge for chemiresistive-type gas sensors distinguishing mixture gases is that for highly accurate recognition, massive data processing acquired from various types of sensor configurations must be considered. The impact of data processing is indeed ineffective and time-consuming. Herein, we systemically investigate the effect of the selectivity for a target gas on the prediction accuracy of gas concentration via machine learning based on a support vector machine model. The selectivity factor S(X) of a gas sensor for a target gas "X" is introduced to reveal the correlation between the prediction accuracy and selectivity of gas sensors. The presented work suggests that (i) the strong correlation between the selectivity factor and prediction accuracy has a proportional relationship, (ii) the enhancement of the prediction accuracy of an elemental sensor with a low sensitivity factor can be attained by a complementary combination of the other sensor with a high selectivity factor, and (iii) it can also be boosted by combining the sensor having even a low selectivity factor.

12.
Small ; 17(17): e2007213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33719185

RESUMO

Organic polymer-based dielectrics with intrinsic mechanical flexibility and good processability are excellent candidates for the dielectric layer of flexible electronics. These polymer films can become even more rigid and electrically robust when modified through cross-linking processes. Moreover, the composites formed by dispersing nanoscale inorganic fillers in a polymer matrix can exhibit further improved polarization property. However, these strategies can be challenging as homogeneous dispersion of nanomaterials in the matrix is difficult to achieve; thus, degradation of electrically insulating properties of nanocomposite layers is often observed. Here, a high-k, pinhole-free, and flexible poly(vinyl alcohol) (PVA)-based nanocomposite dielectric is presented, incorporating 2D TiO2 nanosheets (NSs) for the first time. Despite the attractive dielectric constant, exceptional flexibility, and electrically insulating property of PVA-TiO2 nanocomposites, only few studies on these materials have been reported. The organic/inorganic nanosheet hybrid layer, which reaches an unprecedentedly high dielectric constant of 43.8 (more than four times higher than that of cross-linked PVA), also exhibits an outstanding leakage current density as low as 10-9 A cm-2 . Furthermore, the repeated bending tests for nanocomposite capacitors reveal their capability of operating without any deterioration of their performances even after 1000 iterations of bending cycles at a bending radius of 3 mm.

13.
ACS Appl Mater Interfaces ; 13(3): 4703-4710, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33435666

RESUMO

Many research groups have been interested in the quartz crystal microbalance (QCM)-based gas sensors due to their superb sensitivity originated from direct mass sensing at the ng level. Despite such high sensitivities observed from QCM sensors, their ability to identify gas compounds still needs to be enhanced. Herein, we report a highly facile method that utilizes microcolumns integrated on a QCM gas-responsive system with enhanced chemical selectivity for sensing and ability to identify volatile organic compound single gases. Graphene oxide (GO) flakes are coated on the QCM electrode to substantially increase the adsorption of gas molecules, and periodic polydimethylsiloxane microcolumns with micrometer-scale width and height were installed on the GO-coated QCM electrode. The observed frequency shifts upon sensing of various single gas molecules (such as ethanol, acetone, hexane, etc.) can be analyzed accurately using a simple exponential model. The QCM sensor system with and without the microcolumn both exhibited high detection response values above 50 ng/cm2 for sensing of the gases. Notably, the QCM sensor equipped with the microcolumn features gas identification ability, which is observed as distinct diverging behavior of time constants upon detection of different gases caused by the difference in diffusional transfer of molecules through the microcolumns. For example, the difference in the calculated time constant between ethanol and acetone increased from 22.6 to 92.1 s after installation of the microcolumn. This approach provides an easy and efficient method for identification of single gases, and it may be applied in various advanced sensor systems to enhance their gas selectivity.

14.
ACS Appl Mater Interfaces ; 12(42): 47802-47810, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985173

RESUMO

To gain the target functionality of graphene for gas detection, nonfocused and large-scale compatible MeV electron beam irradiation on graphene with Ag patterns is innovatively adopted in air for chemical patterning of graphene. This strategy allows the metal-assisted site-specific oxidation of graphene to realize monolithically integrated graphene-chemically patterned graphene (CPG)-graphene homojunction-based gas sensors. The size-tunable CPG patterns can be mediated by regulating the size of Ag prepatterns. The impacts of highly energetic electron irradiation (HEEI) on graphene are summarized as follows: (i) the selective p-type doping and the defect generation of graphene by the HEEI-induced oxidation, (ii) the resistance of the homojunction devices manipulated by the HEEI dose, (iii) the band gap opening of graphene as well as the lowering of the Fermi level, (iv) the work function values for pristine graphene and CPG corresponding to 4.14 and 4.88 eV, respectively, and (v) graphene-CPG-graphene homojunction for NO2 gas, revealing an 839% enhanced gas response compared with that of the pristine graphene-based gas sensor.

15.
ACS Appl Mater Interfaces ; 12(13): 15396-15405, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148019

RESUMO

Perhydropolysilazane (PHPS), an inorganic polymer composed of Si-N and Si-H, has attracted much attention as a precursor for gate dielectrics of thin-film transistors (TFTs) due to its facile processing even at a relatively low temperature. However, an in-depth understanding of the tunable dielectric behavior of PHPS-derived dielectrics and their effects on TFT device performance is still lacking. In this study, the PHPS-derived dielectric films formed at different annealing temperatures have been used as the gate dielectric layer for solution-processed indium zinc oxide (IZO) TFTs. Notably, the IZO TFTs fabricated on PHPS annealed at 350 °C exhibit mobility as high as 118 cm2 V-1 s-1, which is about 50 times the IZO TFTs made on typical SiO2 dielectrics. The outstanding electrical performance is possible because of the exceptional capacitance of PHPS-derived dielectric caused by the limited hydrolysis reaction of PHPS at a low processing temperature (<400 °C). According to our analysis, the exceptional dielectric behavior is originated from the electric double layer formed by mobile of protons in the low temperature-annealed PHPS dielectrics. Furthermore, proton conduction through the PHPS dielectric occurs through a three-dimensional pathway by a hopping mechanism, which allows uniform polarization of the dielectric even at room temperature, leading to amplified performance of the IZO TFTs.

16.
RSC Adv ; 11(2): 830-837, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423685

RESUMO

The synthesis of organic-inorganic hybrid materials using individual metal-organic molecules as building blocks has been of interest for the last few decades. These hybrid materials are appealing due to the opportunities they provide with respect to a variety of potential applications. Here, we report a novel metal-organic nanostructure made by a hybrid synthetic process that is comprised of thermal evaporation (TE) and atomic layer deposition (ALD) for the metalation of an organic layer. In this work, 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (p-(H6)THPP) and tin(ii) bis(trimethylsilyl)amide (Sn(btsa)2) (or diethylzinc (DEZ)) were utilized as the main organic layer and ALD precursors, respectively. Sn and Zn atoms were coordinated sequentially via surface chemical reactions on specific functional groups of the p-(H6)THPP layer, which was deposited on a solid substrate. X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy were used to characterize and confirm the growth mechanism and optical properties of the synthesized hybrid films. This method should serve as a major breakthrough for building advanced organic-inorganic materials-based devices.

17.
ChemSusChem ; 13(2): 376-384, 2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31758646

RESUMO

Although energy-storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all-solid-state energy-storage devices with enhanced stability is proposed. A new eco-friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS-LiSMC). The transparent and flexible electrolyte exhibits a good conductivity of near 1 mS cm-1 . An all-solid-state supercapacitor fabricated from 20 wt % LiTFS-LiSMC shows comparable specific capacitances to a standard liquid-electrolyte supercapacitor and an excellent stability even after 20 000 charge-discharge cycles. The electrolyte is also compatible with patterned carbon, which enables the simple fabrication of micro-supercapacitors. In addition, the LiTFS-LiSMC electrolyte can be recycled and reused more than 20 times with negligible change in its performance. Thus, it is a promising material for sustainable energy-storage devices.

18.
Front Chem ; 7: 716, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709239

RESUMO

The synthesis of low cost, high efficacy, and durable hydrogen evolution electrocatalysts from the non-noble metal group is a major challenge. Herein, we establish a simple and inexpensive chemical reduction method for producing molybdenum carbide (Mo2C) and tungsten carbide (W2C) nanoparticles that are efficient electrocatalysts in alkali and acid electrolytes for hydrogen evolution reactions (HER). Mo2C exhibits outstanding electrocatalytic behavior with an overpotential of -134 mV in acid medium and of -116 mV in alkaline medium, while W2C nanoparticles require an overpotential of -173 mV in acidic medium and -130 mV in alkaline medium to attain a current density of 10 mA cm-2. The observed results prove the capability of high- and low-pH active electrocatalysts of Mo2C and W2C nanoparticles to be efficient systems for hydrogen production through HER water electrolysis.

19.
Adv Mater ; 31(29): e1901405, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31157462

RESUMO

Despite many encouraging properties of transition metal dichalcogenides (TMDs), a central challenge in the realm of industrial applications based on TMD materials is to connect the large-scale synthesis and reproducible production of highly crystalline TMD materials. Here, the primary aim is to resolve simultaneously the two inversely related issues through the synthesis of MoS2(1- x ) Se2 x ternary alloys with customizable bichalcogen atomic (S and Se) ratio via atomic-level substitution combined with a solution-based large-area compatible approach. The relative concentration of bichalcogen atoms in the 2D alloy can be effectively modulated by altering the selenization temperature, resulting in 4 in. scale production of MoS1.62 Se0.38 , MoS1.37 Se0.63 , MoS1.15 Se0.85 , and MoS0.46 Se1.54 alloys, as well as MoS2 and MoSe2 . Comprehensive spectroscopic evaluations for vertical and lateral homogeneity in terms of heteroatom distribution in the large-scale 2D TMD alloys are implemented. Se-stimulated strain effects and a detailed mechanism for the Se substitution in the MoS2 crystal are further explored. Finally, the capability of the 2D alloy for industrial application in nanophotonic devices and hydrogen evolution reaction (HER) catalysts is validated. Substantial enhancements in the optoelectronic and HER performances of the 2D ternary alloy compared with those of its binary counterparts, including pure-phase MoS2 and MoSe2 , are unambiguously achieved.

20.
Sci Rep ; 9(1): 9376, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253841

RESUMO

Low-dimensional nanostructures and their complementary hybridization techniques are in the vanguard of technological advances for applications in transparent and flexible nanoelectronics due to the intriguing electrical properties related to their atomic structure. In this study, we demonstrated that welding of Ag nanowires (NWs) encapsulated in graphene was stimulated by flux-optimized, high-energy electron beam irradiation (HEBI) under ambient conditions. This methodology can inhibit the oxidation of Ag NWs which is induced by the inevitably generated reactive ozone as well as improve of their electrical conductivity. We have systematically explored the effects of HEBI on Ag NWs and graphene. The optimized flux for HEBI welding of the Ag NWs with graphene was 150 kGy, which decreased the sheet resistance of the graphene/Ag NWs to 12 Ohm/sq. Following encapsulation with graphene, the initial chemical states of the Ag NWs were well-preserved after flux-tuned HEBI, whereas graphene underwent local HEBI-induced defect generation near the junction area. We further employed resonant Raman spectroscopy to follow the structural evolution of the sacrificial graphene in the hybrid film after HEBI. Notably, the sheet resistance of the welded Ag NWs encapsulated with graphene after HEBI was well-maintained even after 85 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA