Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Cell ; 91: 102577, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39368268

RESUMO

BACKGROUND: The management of non-small cell lung cancer (NSCLC) often includes the use of radiotherapy, with individual outcomes being impacted by the tumor's response to this treatment modality. Cephalomannine (CPM), a taxane diterpenoid found in Taxus spp, has been found to have anti-tumor activity. This study was aim to the explore the role and mechanism by which CPM affects radiotherapy resistance in NSCLC. METHODS: H460 cells were pretreated with different doses of CPM. H460 cells were transfected with ß-catenin overexpression plasmids. The cell viability, colony-forming ability, migration ability, and sphere-forming ability and apoptosis of the cells were measured by using CCK-8, colony-forming, transwell, and sphere-forming assay and flow cytometry. Western blot assay was employed to detect the expression of ß-catenin and BMP2. RESULTS: The cell viability, proliferation, migration and sphere-forming ability of cells in the radiotherapy-resistant (RR) group were significantly higher than those in the radiotherapy-sensitivity (RS) group. Conversely, the apoptosis rate of cells in the RR group was lower than that in the RS group. However, after CPM pretreatment of RR group cells, the above phenomena were reversed in a CPM dose-dependent manner. Subsequently, pretreatment with CPM resulted in a decrease in the expression levels of ß-catenin and BMP2 in the RR group. In addition, overexpression of ß-catenin mitigated the inhibitory effects of CPM on radiotherapy-resistant NSCLC cells. CONCLUSION: CPM has the potential to decrease radiotherapy resistance in NSCLC cells by inhibiting the ß-catenin-BMP2 signaling pathway, promoting apoptosis, and ultimately impeding cell growth.

2.
Medicine (Baltimore) ; 100(32): e26911, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34397927

RESUMO

RATIONALE: With the recent advancements in molecular biology research, epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have emerged as excellent therapies for patients with EGFR-mutant cancers. However, these patients inevitably develop cross-acquired resistance to EGFR-TKIs. Transformation to small-cell lung cancer (SCLC) is considered a rare resistance mechanism against EGFR-TKI therapy. Here, we report a case of TKI resistance due to SCLC transformation and demonstrate its mechanisms and clinical features. PATIENT CONCERNS: A 54-year-old Chinese man with a history of smoking for 40 years complained of an intermittent cough in March 2019. DIAGNOSIS: Transbronchial lung biopsy was performed on the basal segment of the left lower lobe, which confirmed lung adenocarcinoma. In January 2020, repeat biopsy was performed, and the results of immunohistochemistry (IHC) staining showed TTF-1 (+), CK7 (+), napsin A (+), syn (+), and CD56 (+), with a Ki-67 (+) index 80% of small cell carcinomas. Infiltrating adenocarcinomas and small cell carcinomas were observed. INTERVENTIONS: Icotinib (125 mg thrice daily) was administered as a first-line treatment from June 2019. We subsequently administered a chemotherapy regimen consisting of etoposide (180 mg, days 1-3) plus cisplatin (45 mg, days 1-3) every 3 weeks for 1 cycle after recurrence. As the patient could not tolerate further chemotherapy, he continued taking icotinib orally and received whole-brain radiotherapy 10 times to a total dose of 30 Gy after brain metastases. OUTCOMES: The patient relapsed after successful treatment with icotinib for 9 months. A partial response was achieved after 4 cycles of chemotherapy, and despite the brief success of chemotherapy, our patient exhibited brain metastasis and metastases of the eleventh thoracic spine and the second lumbar vertebra with pathological fracture. The patient eventually died of aggressive cancer progression. LESSONS: Our case highlights the possibility of SCLC transformation from EGFR-mutant adenocarcinoma and the importance of repeat biopsy for drug resistance. Serum neuron-specific enolase levels may also be useful for detecting early SCLC transformation.


Assuntos
Adenocarcinoma de Pulmão/genética , DNA de Neoplasias/genética , Neoplasias Pulmonares/genética , Mutação , Carcinoma de Pequenas Células do Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biópsia , Transformação Celular Neoplásica , Análise Mutacional de DNA , Receptores ErbB/genética , Receptores ErbB/metabolismo , Evolução Fatal , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Tomografia Computadorizada por Raios X
3.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 46(4): 349-356, 2017 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-29256222

RESUMO

OBJECTIVE: To investigate the effects of microRNA(miRNA)-29b on the proliferation and migration of breast cancer cells and its molecular mechanism. METHODS: The recombinant lentiviral expression vector (lenti-miRNA-29b) was constructed and transfected into 293T cells to obtain lentivirus particles that were used to infect breast cancer MCF-7 cells. Transfection efficiency of lenti-miRNA-29b in MCF-7 cells was identified by the expression of green fluorescent protein (GFP). The expression of miRNA-29b was detected by real-time PCR. The cell proliferation and migration were detected by CCK8 assay and Transwell assay, respectively. The bioinformatics softwares were used to predict and screen the downstream target genes regulated by miRNA-29b, which were verified by double luciferase reporter gene assay, RT-PCR and Western blot. The effects of screened target gene RTKN on the growth and migration of MCF-7 cells were verified by RTKN siRNA. RESULTS: Recombinant lentiviral expression vector of miRNA-29b were successfully constructed. About 90% and 60% of the breast cancer cells showed green fluorescence in lenti-miRNA-29b and lenti-miRNA-NC groups, respectively. The expression of miRNA-29b in lenti-miRNA-29b group increased significantly compared with the lenti-miRNA-NC group and blank control group (all P<0.05); the proliferation and migration ability of MCF-7 cells significantly reduced compared with the control group (all P<0.05). The screening with bioinformatics softwares found that the 3'UTR coding region RTKN had the binding site to miRNA-29b; the dual luciferase reporter gene assay showed that the luciferase activity decreased significantly after the MCF-7 cells were co-transfected with wild type RTKN-WT-3'UTR and miRNA-29b mimics report gene vector (P<0.05). The RTKN proteins in MCF-7 cells were significantly decreased after transfection with siRNA-RTKN, and the proliferation and migration ability of MCF-7 cells were significantly reduced (all P<0.05). CONCLUSIONS: MiRNA-29b can inhibit the proliferation, invasion and metastasis of breast cancer cells by inhibiting the expression of RTKN.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias da Mama , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Células MCF-7 , MicroRNAs/genética , MicroRNAs/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA