Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; : 125153, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39427954

RESUMO

Per- and polyfluoroalkyl substances and their short-chain alternatives have attracted world-wide attention due to their widespread presence and persistence in the environment. However, the sources, environmental fate, and driving forces of PFAS in coastal ecosystems remain poorly understood. In this study, the spatial distribution, source apportionment, and driving mechanisms of PFAS were investigated through a comprehensive analysis of water samples collected along the China's coastline. The concentrations of Σ25PFAS in water samples followed a general pattern, with higher levels observed in northern coastal zones of China than the south, ranging from 0.72 to 1872.21 ng L-1. PFOA and PFBA were dominant. Emerging short-chain PFAS, such as PFBS, PFBA, F-53B and GenX, were frequently detected, with detection rates of 97%, 99%, 95% and 77%, respectively. This indicated a shift in coastal PFAS contamination from legacy compounds to emerging short-chain alternatives. Source apportionment using the Positive Matrix Factorization model identified key contributors to PFAS pollution, including textile production, volatile precursors, precious metal industries, aqueous film-forming foam, metal-plating, electrochemical fluorination, and fluoropolymer manufacturing. Additionally, PFAS concentrations were significantly positively correlated with cultivated land, urban area, and wastewater discharge, while negatively correlated with annual precipitation and woodland coverage (p<0.05). Socio-economic development was identified as a major driver of PFAS emissions, while the hydrological factors and vegetation coverage can significantly enhance watershed resilience against PFAS pollution.

2.
Environ Pollut ; 360: 124609, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39074690

RESUMO

Fluorochemical industry is an emerging industry leading to environmental emissions of fluoride ion, fluorinated greenhouse gases (GHGs) and per- and polyfluoroalkyl substances (PFASs) globally. Chlorofluorocarbon (CFCs) and hydrochlorofluorocarbon (HCFCs) are the primary causes of ozone layer depletion, and together with hydrofluorocarbons (HFCs), they contribute to global climate warming. PFAS are emerging persistent organic pollutants, comprising thousands of materials including perfluoroalkyl acids (PFAAs), perfluoroalkane sulfonamides (FASAs), and fluoropolymers.As the implementation of the Montreal Protocol and the Stockholm Convention makes progress, fluorochemical industry is searching for alternatives like HFCs, perfluoroalkyl ether carboxylic acids (PFECAs) and etc. Even though studies on chemical processes and environmental influences of the fluorochemical industry are plentiful, research on emissions of fluorine chemicals from different fluorochemical industry is still scarce. In this study, we conducted on-site sampling to analyze the distribution of fluorine chemicals in the surrounding environment of the fluorochemical industrial sites. The sampling sites represent different stages of fluorochemical industry production, including fluorite mining, synthesis of fluorochemical raw materials like fluorocarbons, and fine fluorine product processing which is mostly PFAS. Results show that at the fluorite mining stage, concurrent emissions of fluoride ion and CFC-12 contribute to the primary environmental issue. Perfluorooctanoic acid (PFOA) and some short-chain PFASs like perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluoroheptanoic acid (PFHpA), and perfluorobutanesulfonic acid (PFBS) are the main pollutants from fluocarbons production, accompanied by emissions of fluorinated GHGs such as HFC-32, and HCFC-22. At the fine fluorine product synthesis stage where produces fluoropolymers, perfluoropolyethers and fluorinated surfactants, PFAS especially for emerging alternatives PFECAs like hexafluoropropylene oxide dimer acid (HFPODA) and Perfluoro-4-oxapentanoic acid (PF4OPeA), as well as fluorinated GHGs like HFC-23 and HFC-227ea, require increasing attention.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Fluoretos , Fluorocarbonos , Gases de Efeito Estufa , Fluorocarbonos/análise , Fluoretos/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Gases de Efeito Estufa/análise , Caprilatos/análise , Indústria Química
3.
Sci Total Environ ; 927: 172094, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575036

RESUMO

Mangrove estuaries are an important land-sea transitional ecosystem that is currently under various pollution pressures, while there is a lack of research on per- and polyfluoroalkyl substances (PFAS) in the organisms of mangrove estuaries. In this study, we investigated the distribution and seasonal variation of PFAS in the tissues of organisms from a mangrove estuary. The PFAS concentrations in fish tissues varied from 0.45 ng/g ww to 17.67 ng/g ww and followed the order of viscera > head > carcass > muscle, with the highest tissue burden found in the fish carcass (39.59 ng). The log BAF values of PFDoDA, PFUnDA, and PFDA in the whole fish exceeded 3.70, indicating significant bioaccumulation. The trophic transfer of PFAS in the mangrove estuary food web showed a dilution effect, which was mainly influenced by the spatial heterogeneity of PFAS distribution in the estuarine environment, and demonstrated that the gradient dilution of PFAS in the estuary habitat environment can disguise the PFAS bio-magnification in estuarine organisms, and the larger the swimming ranges of organisms, the more pronounced the bio-dilution effect. The PFOA-equivalent HRs of category A and B fish were 3.48-5.17 and 2.59-4.01, respectively, indicating that mangrove estuarine residents had a high PFAS exposure risk through the intake of estuarine fish.


Assuntos
Bioacumulação , Monitoramento Ambiental , Estuários , Peixes , Cadeia Alimentar , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Peixes/metabolismo , Áreas Alagadas , Fluorocarbonos/análise , Fluorocarbonos/metabolismo
4.
Ecotoxicol Environ Saf ; 272: 116041, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350213

RESUMO

Although PFOS has been banned as a persistent organic pollutant, it still exists in large quantities within the environment, thus impacting the health of aquatic ecosystems. Previous studies focused solely on high PFOS concentrations, disregarding the connection with environmental factors. To gain a more comprehensive understanding of the PFOS effects on aquatic ecosystems amidst changing environmental conditions, this study investigated the cellular responses of Microcystis aeruginosa to varying PFOS concentrations under heatwave and nutrient stress conditions. The results showed that PFOS concentrations exceeding 5.0 µg/L had obvious effects on multiple physiological responses of M. aeruginosa, resulting in the suppression of algal cell growth and the induction of oxidative damage. However, PFOS concentration at levels below 20.0 µg/L has been found to enhance the growth of algal cells and trigger significant oxidative damage under heatwave conditions. Heatwave conditions could enhance the uptake of PFOS in algal cells, potentially leading to heightened algal growth when PFOS concentration was equal to or less than 5.0 µg/L. Conversely, deficiency or limitation of nitrogen and phosphorus significantly decreased algal abundance and chlorophyll content, inducing severe oxidative stress that could be mitigated by exposure to PFOS. This study holds significance in managing the impact of PFOS on algal growth across diverse environmental conditions.


Assuntos
Microcystis , Ecossistema , Clorofila , Estresse Oxidativo , Fósforo/farmacologia
5.
Sci Total Environ ; 890: 164207, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37196964

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic fluorides that have been widely used in various industrial and consumer applications. However, their potential ecological risks have raised concerns. In this study, PFASs were investigated in different environmental media in the Jiulong River and Xiamen Bay regions of China, revealing widespread contamination of PFASs in the watershed. PFBA, PFPeA, PFOA, and PFOS were detected in all 56 sites, with short-chain PFASs dominating (72 % of the total). Novel PFAS alternatives, including F53B, HFPO-DA, and NaDONA, were detected in >90 % of the water samples. Seasonal and spatial variations in PFAS concentrations were observed in the Jiulong River estuary, while Xiamen Bay was not significantly affected by seasonal changes. In sediment, PFSAs were dominant with long-chains while PFCAs with short-chains, and the occurrence was influenced by water depth and salinity. PFSAs were more inclined to be adsorbed in sediments than PFCAs, and log Kd of PFCAs increased with the numbers of -CF2-. Paper packaging, machinery manufacturing, WWTP discharge, airport and dock activities were the dominant sources of PFASs. Risk quotient showed that PFOS or PFOA may pose high toxicity to Danio rerio and Chironomus riparius. Although the overall ecological risk in the catchment is still low, the hazard of bio-concentration under long-term exposure and multi-pollutant synergistic toxicity cannot be ignored.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Água , Ácidos Alcanossulfônicos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixe-Zebra , China , Fluorocarbonos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA